Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crop rotation may help wait out soil pathogen deadly to pumpkins

11.05.2004


Chemicals have limited effects on controlling it and there are no known resistant varieties of processing pumpkin to withstand an attack of the deadly blight known as Phytophthora capsici (P. capsici). Now, researchers at the University of Illinois at Urbana-Champaign suspect that rotating crops that are not susceptible to the disease may be a solution to the problem.



In a recent study, 45 species of crop and weed plants were screened for their susceptibility to P. capsici. Although 22 crop species succumbed to the disease, 14 did not.

Mohammad Babadoost, a plant pathologist in the College of Agricultural, Consumer and Environmental Sciences, believes that rotating the 14 resistant vegetable varieties may serve to wait out the pathogen until it is safe to once again plant pumpkins or other crops susceptible to P. capsici.


"Crop rotation is already being used by pumpkin growers as an important component of disease management," Babadoost said. "Most pumpkin growers in Illinois follow at least a short-term crop rotation. However, most growers have experienced heavy losses when carrot, lima beans, pea, pepper, snap bean, and tomato were grown prior to pumpkin."

In order to make crop rotation a successful solution to waiting out the pathogen, a critical question remains to be answered: How long does the pathogen stay alive in the soil?

"Unfortunately, we don’t know how long," Babadoost said. "Currently, I have a graduate student investigating that. We are trying to work out the problem piece by piece, then develop effective strategies to manage this disease. Definitely, the study that [Donglan] Tian completed provided us with very valuable information in dealing with this destructive pathogen."

Soybean, corn, and wheat, the major crops grown in Illinois, did not become infected, and there is no report indicating that these crops are hosts of P. capsici. The other 11 vegetable crops that, when inoculated with P. capsici, did not develop symptoms of the disease are basil, broccoli, cabbage, cauliflower, celery, chive, dill, kale, kohlrabi, mustard and parsley.

The 22 vegetable crop seedlings that became infected and developed symptoms of the disease in the study are: beet, carrot, eggplant, green bean, lima bean, radish, snow pea, spinach, Swiss-chard, tomato, turnip, onion, pepper and a long list of vine vegetables including pumpkin, cantaloupe, cucumber, gourd, honeydew melon, muskmelon, squash, watermelon and zucchini.

The incidence of fruit rot on pumpkins caused by P.capsici has dramatically increased in Illinois, causing yield losses of up to 100 percent. "Jack-o-lantern pumpkin is an important crop in Illinois, and approximately 90 percent of the commercial processing pumpkin produced in the United States are grown in Illinois," Babadoost said. "So this is an economic problem for the state."

Babadoost and Donglan Tian, a graduate student in crop sciences, completed the study, which appears in the May issue of Plant Disease, a journal of the American Phytopathological Society. The research was supported in part by funds from North Central Region Sustainable Agriculture, Research and Education, the Illinois Department of Agriculture and Nestle Food Inc.

Debra Levey Larson | UIUC
Further information:
http://www.uiuc.edu/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>