Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crop rotation may help wait out soil pathogen deadly to pumpkins

11.05.2004


Chemicals have limited effects on controlling it and there are no known resistant varieties of processing pumpkin to withstand an attack of the deadly blight known as Phytophthora capsici (P. capsici). Now, researchers at the University of Illinois at Urbana-Champaign suspect that rotating crops that are not susceptible to the disease may be a solution to the problem.



In a recent study, 45 species of crop and weed plants were screened for their susceptibility to P. capsici. Although 22 crop species succumbed to the disease, 14 did not.

Mohammad Babadoost, a plant pathologist in the College of Agricultural, Consumer and Environmental Sciences, believes that rotating the 14 resistant vegetable varieties may serve to wait out the pathogen until it is safe to once again plant pumpkins or other crops susceptible to P. capsici.


"Crop rotation is already being used by pumpkin growers as an important component of disease management," Babadoost said. "Most pumpkin growers in Illinois follow at least a short-term crop rotation. However, most growers have experienced heavy losses when carrot, lima beans, pea, pepper, snap bean, and tomato were grown prior to pumpkin."

In order to make crop rotation a successful solution to waiting out the pathogen, a critical question remains to be answered: How long does the pathogen stay alive in the soil?

"Unfortunately, we don’t know how long," Babadoost said. "Currently, I have a graduate student investigating that. We are trying to work out the problem piece by piece, then develop effective strategies to manage this disease. Definitely, the study that [Donglan] Tian completed provided us with very valuable information in dealing with this destructive pathogen."

Soybean, corn, and wheat, the major crops grown in Illinois, did not become infected, and there is no report indicating that these crops are hosts of P. capsici. The other 11 vegetable crops that, when inoculated with P. capsici, did not develop symptoms of the disease are basil, broccoli, cabbage, cauliflower, celery, chive, dill, kale, kohlrabi, mustard and parsley.

The 22 vegetable crop seedlings that became infected and developed symptoms of the disease in the study are: beet, carrot, eggplant, green bean, lima bean, radish, snow pea, spinach, Swiss-chard, tomato, turnip, onion, pepper and a long list of vine vegetables including pumpkin, cantaloupe, cucumber, gourd, honeydew melon, muskmelon, squash, watermelon and zucchini.

The incidence of fruit rot on pumpkins caused by P.capsici has dramatically increased in Illinois, causing yield losses of up to 100 percent. "Jack-o-lantern pumpkin is an important crop in Illinois, and approximately 90 percent of the commercial processing pumpkin produced in the United States are grown in Illinois," Babadoost said. "So this is an economic problem for the state."

Babadoost and Donglan Tian, a graduate student in crop sciences, completed the study, which appears in the May issue of Plant Disease, a journal of the American Phytopathological Society. The research was supported in part by funds from North Central Region Sustainable Agriculture, Research and Education, the Illinois Department of Agriculture and Nestle Food Inc.

Debra Levey Larson | UIUC
Further information:
http://www.uiuc.edu/

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>