Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly cloned gene key to global adaptation of wheat

12.03.2004


A team of researchers at the University of California, Davis, has pieced together a clearer picture of how wheat has been able to adapt to such a wide range of climates and become one of the world’s staple food grains.



They accomplished this by isolating and cloning the VRN2 gene in wheat, which controls vernalization -- the cold-weather requirement for triggering flowering. The findings of the study, which have practical implications for improving wheat varieties through manipulation of flowering times, will be reported in the March 12 issue of the journal Science.

The researchers, who last year cloned the first wheat vernalization gene, VRN1, discovered that VRN1 and VRN2 work together to confer the winter growth habit. They showed that loss-of-function mutations in either of these two genes result in spring wheat varieties that don’t require cold weather to initiate flowering. These varieties can be planted in spring to grow throughout the warmer months of the year. On the contrary, winter wheat varieties germinate and go through early growth stages in the fall but wait until the very cold winter weather passes before flowering in spring.


"During the 10,000 years of domestication of wheat, different mutations occurred in these two genes," said Professor Jorge Dubcovsky, a wheat breeder and leader of the UC Davis research group. "It is now possible to characterize these different mutations and study their effects on the adaptability of wheat to the different environments.

"These studies will provide breeders with a tool to select the best vernalization gene combinations for particular regions," he added. "An additional application of this discovery will be the experimental manipulation of cereals’ flowering time. And a delay in flowering time could also be of particular value for forage grasses."

Working in collaboration with a team of researchers from the U.S. Department of Agriculture’s Western Regional Research Center in Albany, Calif., Dubcovsky’s group has already produced a transgenic winter wheat that flowers 42 days earlier than the non-transgenic line.

Wheat has developed into one of the world’s most important crops. It is estimated by the Food and Agriculture Organization of the United Nations that wheat now provides 23 percent of the food available for daily human consumption around the world.

Wheat is grown not only by such leading producers as China, the European Union, the United States, India and Canada, but also by more than 70 developing nations and on six continents, according to CIMMYT -- The International Wheat and Maize Improvement Center. Although it originated in the mild climates of the Middle East, wheat is now cultivated throughout a wide range of temperatures and environments.

This climatic adaptability is, in large part, responsible for wheat’s success as a source of food for both humans and livestock. And key to this adaptive ability is the biological process of vernalization. Winter wheat, for example, requires several weeks of low temperatures, usually in the range of 40-50 degrees, in order to flower and eventually produce grain. This cold-weather requirement prevents flowers from developing during winter when they might be damaged by the cold.

In addition, this vernalization system is very flexible. During the domestication of wheat, barley and other temperate cereals, different loss-of-function mutations occurred in the vernalization genes and were selected by humans, resulting in spring varieties better adapted to certain regions.

Last year, Dubcovsky and colleagues reported detailed genetic and physical maps for the VRN1 region in wheat, rice and sorghum. By comparing the sequences from these species, they determined that the wheat VRN1 vernalization gene was involved in the regulation of the transition from vegetative to reproductive growth. This gene is similar to a gene found in Arabidopsis, a model plant commonly used in research. The VRN1 findings were published in the May 2003 issue of the Proceedings of the National Academy of Sciences

In the more recent study to be published in Science, the UC Davis researchers also used detailed genetic and physical maps to discover the VRN2 gene. They determined that VRN2 is a new type of gene involved in the regulation of other flowering genes. In winter wheat varieties, the VRN2 gene prevents the plant from developing flowers. But when the plant is exposed to cold weather during vernalization, the gene is "down-regulated" -- its activity diminished -- thus allowing the plant to proceed with flower formation. The researchers found that experimental down-regulation of the VRN2 gene accelerated flowering time in genetically modified wheat plants by more than a month.

They also found that, unlike the VRN1 gene, the VRN2 is distinctly different than a gene in Arabidopsis that has a similar function.

"This suggests that as they evolved, Arabidopsis and the temperate grasses developed different vernalization pathways, including both similar and very different genes," said Dubcovsky. "For those of us involved in plant genetics research, this serves as a reminder that while model plant systems like Arabidopsis are extremely valuable, we must not neglect the study of the crop species that feed our world."


Funding for this research was provided by the U.S. Department of Agriculture’s National Research Initiative and the National Science Foundation.

Media contacts:
-- Jorge Dubcovsky, Agronomy and Range Science, 530-752-5159, jdubcovsky@ucdavis.edu
-- Pat Bailey, News Service, 530-752-984

Pat Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>