Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop Sensitive Soil Moisture Technology Sensor to Save Farmers £10 per Hectare and Benefit the Environment

09.12.2003


Scientists have developed a new "intelligent" reliable soil moisture sensor that is set to ensure horticulturists accurately irrigate staple crops such as potatoes and fruit, and enhance environmentally friendly farming practices. A collaboration between the University of Warwick and Herefordshire based McBurney Scientific led to the development of the new product that harnesses enhanced sensor technology for measuring soil moisture with wireless communication and the processing power and convenience of the hand-held computer.



Soil moisture conditions play a vital role in ensuring good crop quality and quantity, and the new device is set to simplify the task of measuring and reduce the costs of irrigation scheduling by more than £10 per hectare each year, compared with current soil measurement equipment. The battery-powered probe is a significant improvement on existing devices, which use complex technology and are often too expensive for use in low-margin crops.

Heat pulse technology embedded in a porous ceramic tip on the probe measures soil moisture content. Readings are then sent via radio signals to a hand-held computer, which can interpret the results to show how much water is needed to optimise growing conditions, depending on factors such as soil type. It automatically downloads the data within a 100 metres range of the sensor.
Consumers demand high quality fruit and vegetables as well as environmentally sensitive methods of crop production, and the amount and timing of irrigation are crucial factors in ensuring a good crop.



In conjunction with the University of Warwick’s Innovation Direct, a free consultancy service for West Midlands based SMEs, the Soil Moisture Sensor recently won the Lord Stafford Award for Innovation, which is awarded to the business with the greatest potential for a product developed in association with a West Midlands University.

The Scientific Soil Moisture Sensor provides a record for suppliers on the use of environmentally friendly growing practices. Too little water causes plant water stress which damages crop yields, but the environment needs to be protected from water overuse, which can compete with the needs of wildlife habitats or cause agricultural chemicals to leach from soils to the environment.

Dr Terry McBurney, owner of McBurney Scientific, said: "The new moisture sensor provides essential accurate information on the level of moisture in the soil, soil temperature and soil tension. This enables farmers to grow crops more intelligently and mitigate the effects of under or over watering."

"Crops such as potatoes, and other horticultural produce, are particularly vulnerable during times of drought. To achieve good quality it’s important to get the water right at critical stages, particularly in June when the tubers are initiating. If conditions get too dry you end up with potato "scab" and farmers can lose premium markets."

A patented prototype is undergoing thorough testing processes to ensure that it will give continuous, maintenance-free performance and the new Soil Moisture Sensor will be available in mid 2004.

Jenny Murray | alfa
Further information:
http://www.warwick.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>