Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop Sensitive Soil Moisture Technology Sensor to Save Farmers £10 per Hectare and Benefit the Environment

09.12.2003


Scientists have developed a new "intelligent" reliable soil moisture sensor that is set to ensure horticulturists accurately irrigate staple crops such as potatoes and fruit, and enhance environmentally friendly farming practices. A collaboration between the University of Warwick and Herefordshire based McBurney Scientific led to the development of the new product that harnesses enhanced sensor technology for measuring soil moisture with wireless communication and the processing power and convenience of the hand-held computer.



Soil moisture conditions play a vital role in ensuring good crop quality and quantity, and the new device is set to simplify the task of measuring and reduce the costs of irrigation scheduling by more than £10 per hectare each year, compared with current soil measurement equipment. The battery-powered probe is a significant improvement on existing devices, which use complex technology and are often too expensive for use in low-margin crops.

Heat pulse technology embedded in a porous ceramic tip on the probe measures soil moisture content. Readings are then sent via radio signals to a hand-held computer, which can interpret the results to show how much water is needed to optimise growing conditions, depending on factors such as soil type. It automatically downloads the data within a 100 metres range of the sensor.
Consumers demand high quality fruit and vegetables as well as environmentally sensitive methods of crop production, and the amount and timing of irrigation are crucial factors in ensuring a good crop.



In conjunction with the University of Warwick’s Innovation Direct, a free consultancy service for West Midlands based SMEs, the Soil Moisture Sensor recently won the Lord Stafford Award for Innovation, which is awarded to the business with the greatest potential for a product developed in association with a West Midlands University.

The Scientific Soil Moisture Sensor provides a record for suppliers on the use of environmentally friendly growing practices. Too little water causes plant water stress which damages crop yields, but the environment needs to be protected from water overuse, which can compete with the needs of wildlife habitats or cause agricultural chemicals to leach from soils to the environment.

Dr Terry McBurney, owner of McBurney Scientific, said: "The new moisture sensor provides essential accurate information on the level of moisture in the soil, soil temperature and soil tension. This enables farmers to grow crops more intelligently and mitigate the effects of under or over watering."

"Crops such as potatoes, and other horticultural produce, are particularly vulnerable during times of drought. To achieve good quality it’s important to get the water right at critical stages, particularly in June when the tubers are initiating. If conditions get too dry you end up with potato "scab" and farmers can lose premium markets."

A patented prototype is undergoing thorough testing processes to ensure that it will give continuous, maintenance-free performance and the new Soil Moisture Sensor will be available in mid 2004.

Jenny Murray | alfa
Further information:
http://www.warwick.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>