Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop Sensitive Soil Moisture Technology Sensor to Save Farmers £10 per Hectare and Benefit the Environment

09.12.2003


Scientists have developed a new "intelligent" reliable soil moisture sensor that is set to ensure horticulturists accurately irrigate staple crops such as potatoes and fruit, and enhance environmentally friendly farming practices. A collaboration between the University of Warwick and Herefordshire based McBurney Scientific led to the development of the new product that harnesses enhanced sensor technology for measuring soil moisture with wireless communication and the processing power and convenience of the hand-held computer.



Soil moisture conditions play a vital role in ensuring good crop quality and quantity, and the new device is set to simplify the task of measuring and reduce the costs of irrigation scheduling by more than £10 per hectare each year, compared with current soil measurement equipment. The battery-powered probe is a significant improvement on existing devices, which use complex technology and are often too expensive for use in low-margin crops.

Heat pulse technology embedded in a porous ceramic tip on the probe measures soil moisture content. Readings are then sent via radio signals to a hand-held computer, which can interpret the results to show how much water is needed to optimise growing conditions, depending on factors such as soil type. It automatically downloads the data within a 100 metres range of the sensor.
Consumers demand high quality fruit and vegetables as well as environmentally sensitive methods of crop production, and the amount and timing of irrigation are crucial factors in ensuring a good crop.



In conjunction with the University of Warwick’s Innovation Direct, a free consultancy service for West Midlands based SMEs, the Soil Moisture Sensor recently won the Lord Stafford Award for Innovation, which is awarded to the business with the greatest potential for a product developed in association with a West Midlands University.

The Scientific Soil Moisture Sensor provides a record for suppliers on the use of environmentally friendly growing practices. Too little water causes plant water stress which damages crop yields, but the environment needs to be protected from water overuse, which can compete with the needs of wildlife habitats or cause agricultural chemicals to leach from soils to the environment.

Dr Terry McBurney, owner of McBurney Scientific, said: "The new moisture sensor provides essential accurate information on the level of moisture in the soil, soil temperature and soil tension. This enables farmers to grow crops more intelligently and mitigate the effects of under or over watering."

"Crops such as potatoes, and other horticultural produce, are particularly vulnerable during times of drought. To achieve good quality it’s important to get the water right at critical stages, particularly in June when the tubers are initiating. If conditions get too dry you end up with potato "scab" and farmers can lose premium markets."

A patented prototype is undergoing thorough testing processes to ensure that it will give continuous, maintenance-free performance and the new Soil Moisture Sensor will be available in mid 2004.

Jenny Murray | alfa
Further information:
http://www.warwick.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>