Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity: What people, grain sorghum have in common

27.11.2003


To society, the word means racial, ethnic and cultural differences. To scientists interested in biological diversity, the meaning is no different.



So assembling Hispanic, African-American and Caucasian students and professors to examine the genome of grain sorghum, and tap into the collection of 40,000 different varieties from around the world, seems like the sensible thing to do.

Outreach to under-represented groups in hopes of attracting new scientists is part of a $2 million sorghum genome grant, funded under the Plant Genome Project of the National Science Foundation, recently awarded to a team led by Dr. Patricia Klein, Texas Agricultural Experiment Station researcher at Texas A&M University’s Institute for Plant Genomics and Biotechnology.


Klein and co-investigators Dr. John Mullet and Dr. Robert Klein will work with Dr. Tineke Sexton at Houston Community College to teach aspiring students how to generate and analyze genetic fingerprints on the sorghum varieties and to present their findings in various scientific arenas. Mullet is the institute’s director and Robert Klein is a U.S. Department of Agriculture-Agriculture Research Service scientist.

"We need all the talent we can get in the sciences," said Mullet, himself once a liberal arts major with hopes for a law degree until a biology class grabbed his interest.

Here’s how it will work. Klein, Klein and Mullet will train Sexton in their labs at Texas A&M. Sexton, in turn, will train HCC students to extract DNA and fingerprint a subset of lines from the 40,000-variety sorghum collection, using funds from the grant to help set up labs at HCC. The sorghum team also will give guest lectures to Sexton’s classes in Houston, and the Internet will be used to keep the students and faculty connected.

Since the Plant Genome Research Project began in 1998, NFS has awarded some $375 million to 120 projects. Over the last decade, Mullet noted, NSF has emphasized trying to integrate research with education and training.

"The makeup of the Houston Community College System is exactly the demographics that we needed to tap into, and their enrollment is about the same as here at Texas A&M," Patricia Klein said. "That made the connection for us."

HCC awards associate degrees to one of the most diverse student bodies in the country, according to Patricia Klein. Its 50,000 students are 23 percent African-American and 36 percent Hispanic.

The sorghum team had been grappling with how to interest a diverse set of college students to participate in their research when Sexton, a former doctoral student of Mullet’s, called with a plea. Sexton, a native of The Netherlands now teaching at HCC, was looking for her former professor’s support on a grant she sought to help engage her students in science.

Out of the $1.9 million overall grain sorghum genome project, therefore, the team carved out some $200,000 to work with the Houston college’s undergraduates. Mullet said the grant will be augmented with funds from the Heep Foundation as well.

Patricia Klein hopes to see "excitement from the students who realize the potential." She said the project will "put a face with a name" as students get to work with researchers on the high-profile genome project.

"I would hope that some who are involved with this project at the community college will want to stay in science," she said. "And those who come to Texas A&M would be able to come to work in our labs here as well."

That connection would benefit not only the students but the researchers who acknowledged that finding students who want to work in science labs can be difficult.

Work by the students will have a major impact on the grain sorghum research. Grain sorghum is grown throughout much of the world and is important both as livestock feed and for human consumption. Genes for a trait of major importance - drought resistance - will be the focus of the overall project which will take about four years, Mullet said.

Kathleen Phillips | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/SOIL/Nov1903a.htm

More articles from Agricultural and Forestry Science:

nachricht Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew
22.01.2018 | Universität Zürich

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>