Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity: What people, grain sorghum have in common

27.11.2003


To society, the word means racial, ethnic and cultural differences. To scientists interested in biological diversity, the meaning is no different.



So assembling Hispanic, African-American and Caucasian students and professors to examine the genome of grain sorghum, and tap into the collection of 40,000 different varieties from around the world, seems like the sensible thing to do.

Outreach to under-represented groups in hopes of attracting new scientists is part of a $2 million sorghum genome grant, funded under the Plant Genome Project of the National Science Foundation, recently awarded to a team led by Dr. Patricia Klein, Texas Agricultural Experiment Station researcher at Texas A&M University’s Institute for Plant Genomics and Biotechnology.


Klein and co-investigators Dr. John Mullet and Dr. Robert Klein will work with Dr. Tineke Sexton at Houston Community College to teach aspiring students how to generate and analyze genetic fingerprints on the sorghum varieties and to present their findings in various scientific arenas. Mullet is the institute’s director and Robert Klein is a U.S. Department of Agriculture-Agriculture Research Service scientist.

"We need all the talent we can get in the sciences," said Mullet, himself once a liberal arts major with hopes for a law degree until a biology class grabbed his interest.

Here’s how it will work. Klein, Klein and Mullet will train Sexton in their labs at Texas A&M. Sexton, in turn, will train HCC students to extract DNA and fingerprint a subset of lines from the 40,000-variety sorghum collection, using funds from the grant to help set up labs at HCC. The sorghum team also will give guest lectures to Sexton’s classes in Houston, and the Internet will be used to keep the students and faculty connected.

Since the Plant Genome Research Project began in 1998, NFS has awarded some $375 million to 120 projects. Over the last decade, Mullet noted, NSF has emphasized trying to integrate research with education and training.

"The makeup of the Houston Community College System is exactly the demographics that we needed to tap into, and their enrollment is about the same as here at Texas A&M," Patricia Klein said. "That made the connection for us."

HCC awards associate degrees to one of the most diverse student bodies in the country, according to Patricia Klein. Its 50,000 students are 23 percent African-American and 36 percent Hispanic.

The sorghum team had been grappling with how to interest a diverse set of college students to participate in their research when Sexton, a former doctoral student of Mullet’s, called with a plea. Sexton, a native of The Netherlands now teaching at HCC, was looking for her former professor’s support on a grant she sought to help engage her students in science.

Out of the $1.9 million overall grain sorghum genome project, therefore, the team carved out some $200,000 to work with the Houston college’s undergraduates. Mullet said the grant will be augmented with funds from the Heep Foundation as well.

Patricia Klein hopes to see "excitement from the students who realize the potential." She said the project will "put a face with a name" as students get to work with researchers on the high-profile genome project.

"I would hope that some who are involved with this project at the community college will want to stay in science," she said. "And those who come to Texas A&M would be able to come to work in our labs here as well."

That connection would benefit not only the students but the researchers who acknowledged that finding students who want to work in science labs can be difficult.

Work by the students will have a major impact on the grain sorghum research. Grain sorghum is grown throughout much of the world and is important both as livestock feed and for human consumption. Genes for a trait of major importance - drought resistance - will be the focus of the overall project which will take about four years, Mullet said.

Kathleen Phillips | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/SOIL/Nov1903a.htm

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>