Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue food scientists improve testing of health supplements

05.09.2003


Lisa Mauer’s research lab at Purdue University has tested a variety of oils for purity – from cod liver to vegetable and every imaginable oil in between. Mauer and her research team used infrared spectroscopy and statistical analysis to classify samples of dietary supplement oils, as well as common food oils. (Agricultural Communications photo/Tom Campbell)


Purdue University researchers have discovered a faster, less expensive method to test the quality and purity of dietary supplement oils, such as flax seed, borage seed and grape seed oil, often touted as cures for many human maladies.

The research results are published in the September issue of the Journal of Agricultural and Food Chemistry and on the journal’s Web site.

"This study brings analytical chemistry, food science, nutritional sciences and consumer interest together," said Lisa Mauer, assistant professor of food science. "Consumers want the salad dressing brand they buy to taste the same every time. The same is true for special types of oils, which are more expensive than a general cooking oil. You expect what you buy to be high quality and contain what is on the label."



Consumers are concerned about purity because of taste, safety, health benefits and cost, she said. While oils that are less pure may be less expensive, they may lose the flavor or health benefits, and some can even be detrimental to health. In addition, consumer demand for food and food additives is increasingly for organic or 100 percent natural products.

Manufacturers of health supplements and drugs are concerned with purity because of quality control issues that impact safety of the substances and company economics.

To address these concerns, scientists search for fast, effective, inexpensive ways of differentiating between different ingredients – in this case dietary supplement oils.

Purdue researchers used infrared spectroscopy and statistical analysis to classify samples of 14 dietary supplement oils and five common food oils. The scientists profiled the chemical makeup of at least two different brands of each.

First, pure oil samples were tested to determine how well the spectroscopy method, called Fourier-transform infrared spectroscopy (FT-IR), could differentiate between each one. Then they mixed various amounts of each cooking oil with one of the dietary oils and tested to determine if FT-IR could identify the amounts of individual oils in the compounds.

FT-IR uses wavelengths of light to identify types of chemical bonds. Each type of molecule absorbs light differently, producing a spectrum. Scientists use this spectral information to identify the compound, much the way a fingerprint can identify a person.

"We wanted to see how good FT-IR and common chemical measurement analyses are at differentiating real-world whole samples instead of just one component," Mauer said. "This is the first time this method has been used to differentiate a whole spectrum of food samples, such as the 19 oils used in the study, instead of only comparing two sample types."

Conventional methods for ensuring the makeup of dietary and special use oils are time-consuming, she said. They involve multiple preparation steps and analysis, which take as much as several hours, after the sample preparation and initial analysis are complete. This painstaking process makes traditional purity tests expensive. The FT-IR method took only five minutes once the analytical procedure had been developed.

Many food and pharmaceutical companies already own FT-IR equipment, so there would be no additional cost of using the new purity testing.

In their research, the Purdue scientists tested oil mixtures that had 2 percent to 20 percent by volume of common food oils.

The researchers found that the FT-IR method could identify the adulteration down to 2 percent. They picked this range because food manufacturers have said those are the levels they need to know for quality control of oil mixtures, Mauer said.

The dietary supplement oils tested were almond, apricot kernel, black currant, borage, cod liver, evening primrose, flax seed, grape seed, hazelnut, hemp seed, macadamia nut, olive, pumpkin seed and wheat germ oils. The common food oils were canola, corn, peanut, soybean and sunflower.

Though they didn’t test for adulteration levels of oils that would cause allergic reactions in people, such as those allergic to peanut products, Mauer said the study indicated that the method likely could detect lower levels of various oils. Other studies have shown that FT-IR can be used to identify the region where the oil-producing plant was grown and the variety of plant from which it came.

"It’s interesting to see that some of the oils, such as canola oil and pumpkin seed oil or hazelnut oil and olive oil, are structurally so similar," Mauer said. "It’s based on the fatty acid composition. But while you see dietary claims related to pumpkin seed oil, I don’t know of any canola oil being sold in capsules for health purposes."

The other researchers involved with this study were Banu Ozen, postdoctoral fellow, and Ilan Weiss, graduate research assistant, both of the Department of Food Science.

The Purdue University Agricultural Research Programs provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Lisa Mauer, (765) 494-9111, mauer@foodsci.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu;

Susan A. Steeves | Purdue University
Further information:
http://news.uns.purdue.edu/html4ever/030904.Mauer.oil.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.nih.gov/

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>