Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically modified crops not necessarily a threat to the environment

23.05.2003


As concerns rise about the ecological impacts of genetically modified crops, a new Indiana University study urges a pragmatic approach to dealing with "transgenes" that escape from crop plants into the wild. Use of transgenic crops is becoming more common as farmers reap benefits from the plants’ decreased susceptibility to disease and increased marketplace value.



IU biologist Loren Rieseberg and former postdoctoral fellow John Burke (now at Vanderbilt University) reported in the May 23 issue of Science that a wheat transgene synthetically inserted into sunflowers has little or no effect on crop sunflowers’ wild relatives and is not likely to impact the environment.

"We found that a certain transgene that gives crop sunflowers resistance to white mold is unlikely to spread rapidly to the wild because the transgene doesn’t affect the seed-producing abilities of wild sunflowers in nature," said Rieseberg, who led the study. "We need to examine each transgene and crop on a case-by-case basis. Some transgenes will have major ecological impacts and others probably won’t."


For example, another study co-authored by Rieseberg, published last month in Ecological Applications, showed that a bacterial transgene inserted into sunflowers significantly increases seed production of wild sunflowers and therefore may incur ecological costs.

A common worry about genetically modified (GM) crops is that new, highly advantageous genes will seep through wild populations as crop plants mingle and reproduce with their wild cousins.

While the new report by Rieseberg and Burke does not refute that worry, the researchers believe that the movement of certain genes from GM crops into the wild may occur at a glacial pace, meaning wild plants in locations far from their alter egos in farm crops will not encounter the transgenes for a long time.

"The question isn’t whether these transgenes will escape into wild relatives -- we know they will," Rieseberg said. "Even if the wild hybrids are partially sterile or inviable, genes will still move across the farm property barrier. So it’s really the fitness effects of a gene that dictate the speed at which it spreads. Genes that aren’t advantageous to the wild plants will spread very slowly. The transgenes that are truly deleterious to wild species won’t move much at all."

The scientists introduced a wheat gene for the white mold-combating enzyme oxalate oxidase (OxOx) to wild sunflowers and compared wild plants with and without the transgene at natural study sites in California, North Dakota and Indiana. Half of the plants in each group were inoculated with white mold. At the end of the study period, Rieseberg and Burke counted the number of seeds produced by each plant. The researchers found that the OxOx transgene had no appreciable effect on the wild plants’ ability to produce seeds. Wild plants lacking the transgene made just as many seeds as plants with the transgene. Rieseberg and Burke also found that the OxOx transgene did not harm any of the sunflowers that possessed it when they were not exposed to the disease.

White mold infection has plagued sunflower farmers for years. Attempts at breeding natural resistance in the economically important plant have generally failed. Fungicides are costly and ineffective, and they may carry health consequences for consumers. The introduction of the OxOx gene to sunflower crops may help reduce their susceptibility to mold.


Both the Science and the Ecological Applications reports were funded by grants from Pioneer Hi-Bred International Inc., a DuPont Corp. company.

To speak with Rieseberg or Burke, contact David Bricker at 812-856-9035 or brickerd@indiana.edu.

Source: "Fitness Effects of Transgenic Disease Resistance in Sunflowers," Science, vol. 300, no. 5623

David Bricker | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018 | Power and Electrical Engineering

Electrode shape improves neurostimulation for small targets

25.04.2018 | Medical Engineering

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>