Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Bovine Gene Regulating Milk Production

20.02.2003


MTT Agrifood Research Finland and the University of Liège, Belgium, have worked together successfully in locating a gene that regulates total yield and protein and fat content of milk. The scientists found a variation in the growth hormone receptor gene in the bovine chromosome 20. The variation in the receptor gene is associated with a major effect on milk yield and composition in Ayrshire, Holstein and Jersey cows.



Dr Johanna Vilkki of MTT says that developing associated markers for genes that affect milk traits is not highly prioritised in breeding since it is relatively easy to improve these traits by conventional selection.

The value of the finding is scientific. This is the second time that a clear quantified association has been demonstrated between a single gene and bovine milk production. The MTT group is currently fine-mapping the genes that affect cows’ susceptibility to mastitis. This is of interest to cattle breeders, since traits sensitive to environmental effects, such as disease resistance, are difficult to improve by conventional methods, and for economic and welfare reasons the eradication of mastitis is an important goal for dairy cattle breeders.


Milk Genes Diagnosed From The Embryo

The present discovery will help breeders select bulls siring daughters with more economical milk production.

The ‘water’ version of the gene results in a 200 kg increase in annual production per cow, respectively decreasing the fat and protein content. The more cost-effective version of the gene will increase the average protein content in milk by 0.06 percentage units and the fat content by 0.15 percentage units, albeit at the expense of total milk yield. In 2002 the annual yield of the Finnish Ayrshire cow was 7,381 kg of milk with fat % of 4.36 and protein % of 3.36. According to Dr Vilkki, the vast majority of Finnish Ayrshire cattle are already carrying the more advantageous form of the gene.

The study, launched in 1999, was part of the EU biotechnology programme project EURIBDIS, in which altogether six European research groups cooperated. The sparse mapping of the entire genome of the Finnish Ayrshire, completed by MTT about two years ago, provided the basis for the present study.

MTT is a co-applicant in an international application for a patent for the use of the variation in the sequence of the growth hormone receptor gene in selection for milk-composition. There is only one comparable patent anywhere in the world, and that is also a result of work by the same international research group.

Simultaneously with the milk gene discovery, MTT’s researchers have developed a method allowing diagnosis of the gene variants from a bovine embryo biopsy. This allows the results to be immediately applied in the ASMO breeding programme, where selection is enhanced by extensive use of embryo transfer.

Johanna Vilkki | alfa

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>