Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Bovine Gene Regulating Milk Production

20.02.2003


MTT Agrifood Research Finland and the University of Liège, Belgium, have worked together successfully in locating a gene that regulates total yield and protein and fat content of milk. The scientists found a variation in the growth hormone receptor gene in the bovine chromosome 20. The variation in the receptor gene is associated with a major effect on milk yield and composition in Ayrshire, Holstein and Jersey cows.



Dr Johanna Vilkki of MTT says that developing associated markers for genes that affect milk traits is not highly prioritised in breeding since it is relatively easy to improve these traits by conventional selection.

The value of the finding is scientific. This is the second time that a clear quantified association has been demonstrated between a single gene and bovine milk production. The MTT group is currently fine-mapping the genes that affect cows’ susceptibility to mastitis. This is of interest to cattle breeders, since traits sensitive to environmental effects, such as disease resistance, are difficult to improve by conventional methods, and for economic and welfare reasons the eradication of mastitis is an important goal for dairy cattle breeders.


Milk Genes Diagnosed From The Embryo

The present discovery will help breeders select bulls siring daughters with more economical milk production.

The ‘water’ version of the gene results in a 200 kg increase in annual production per cow, respectively decreasing the fat and protein content. The more cost-effective version of the gene will increase the average protein content in milk by 0.06 percentage units and the fat content by 0.15 percentage units, albeit at the expense of total milk yield. In 2002 the annual yield of the Finnish Ayrshire cow was 7,381 kg of milk with fat % of 4.36 and protein % of 3.36. According to Dr Vilkki, the vast majority of Finnish Ayrshire cattle are already carrying the more advantageous form of the gene.

The study, launched in 1999, was part of the EU biotechnology programme project EURIBDIS, in which altogether six European research groups cooperated. The sparse mapping of the entire genome of the Finnish Ayrshire, completed by MTT about two years ago, provided the basis for the present study.

MTT is a co-applicant in an international application for a patent for the use of the variation in the sequence of the growth hormone receptor gene in selection for milk-composition. There is only one comparable patent anywhere in the world, and that is also a result of work by the same international research group.

Simultaneously with the milk gene discovery, MTT’s researchers have developed a method allowing diagnosis of the gene variants from a bovine embryo biopsy. This allows the results to be immediately applied in the ASMO breeding programme, where selection is enhanced by extensive use of embryo transfer.

Johanna Vilkki | alfa

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>