Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental impact of fertilisers on agriculture

11.12.2002


The problem is intensive agriculture. Nowadays, some farmers have too many heads of cattle in comparison with their land under tillage. Due to this, purines (manure and stable/barn droppings) are applied in high concentrations on these soils, above all on those around the barns. Also, in order to feed the land which is further afield, farmers buy mineral feeds. Great problems for the environment arise out of the application of high quantities of mineral fertilisers and purines.




The Department of Vegetable Biology and Ecology have been studying this problem for 12 years now. The aim of the researchers is to measure the efficacy of fertilisers used in agriculture and to know their effect on the environment.

The importance of nitrogen


Nitrogen is the principal component in the majority of fertilisers used in agriculture. This is due to the property of this element of accelerating production and vegetable growth. But if it is applied excessively to the soil, plants are unable to absorb all the nitrogen and problems will arise. On the one hand gas emissions are produced and, on the other, water is contaminated.

Gas emissions are produced due to the activity of certain micro-organisms present in the land. Some of these gas emissions, for example nitrous oxide (N2O) and nitric oxide (NO2), can create serious environmental problems. The first is known to cause the greenhouse effect and, together with CO2, is an extremely dangerous compound and nitric oxide can produce acid rain.

Apart from gas emissions, water contamination has to be taken into account. When nitrogen appears in nitrate (NO3) form, it can enter rivers, lakes, and drinking water with the rain, giving rise to health problems in the case of drinking water. Moreover, in the case of contamination of rivers and lakes, it aids the eutrophisation of the water. Due to this eutrophisation, the growth of micro-organisms and aquatic plants is excessive and, consuming all the available oxygen in the water, fish life dies.

The research

Taking these problems into account, the researchers carried out a comparative study of purines and mineral fertilisers. It was clear from the results that the purines performed more slowly than the fertilisers, but that both are equally contaminant as regards gas emissions and ability to pollute water. Thus, it cannot be said that one is “better” than the other.

A second stage involved the analysis of the soil characteristics. A comparison between grazing pastures and fields under cultivation. From this study, it was clear that grazing pastures are more prone to gas emissions and, on the other hand, on cultivated land nitrate is more likely to reach and contaminate water.

Finally, the researchers are analysing the inhibitors of the micro-organisms which produce nitrates, nitrous oxide and nitric oxide. This is in order to have lower gas emissions and less nitrate in water. They are currently analysing the inhibitors to see if they also influence vegetable growth, measuring their capacity as inhibitors, and observing any change in crop production and measuring gas emissions.
There is still considerable research to be carried out.


Contact :
Garazi Andonegi
Elhuyar Fundazioa
garazi@elhuyar.com
(+34) 943363040

Garazi Andonegi | BasqueResearch
Further information:
http://www.ehu.es

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>