Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Environmental impact of fertilisers on agriculture


The problem is intensive agriculture. Nowadays, some farmers have too many heads of cattle in comparison with their land under tillage. Due to this, purines (manure and stable/barn droppings) are applied in high concentrations on these soils, above all on those around the barns. Also, in order to feed the land which is further afield, farmers buy mineral feeds. Great problems for the environment arise out of the application of high quantities of mineral fertilisers and purines.

The Department of Vegetable Biology and Ecology have been studying this problem for 12 years now. The aim of the researchers is to measure the efficacy of fertilisers used in agriculture and to know their effect on the environment.

The importance of nitrogen

Nitrogen is the principal component in the majority of fertilisers used in agriculture. This is due to the property of this element of accelerating production and vegetable growth. But if it is applied excessively to the soil, plants are unable to absorb all the nitrogen and problems will arise. On the one hand gas emissions are produced and, on the other, water is contaminated.

Gas emissions are produced due to the activity of certain micro-organisms present in the land. Some of these gas emissions, for example nitrous oxide (N2O) and nitric oxide (NO2), can create serious environmental problems. The first is known to cause the greenhouse effect and, together with CO2, is an extremely dangerous compound and nitric oxide can produce acid rain.

Apart from gas emissions, water contamination has to be taken into account. When nitrogen appears in nitrate (NO3) form, it can enter rivers, lakes, and drinking water with the rain, giving rise to health problems in the case of drinking water. Moreover, in the case of contamination of rivers and lakes, it aids the eutrophisation of the water. Due to this eutrophisation, the growth of micro-organisms and aquatic plants is excessive and, consuming all the available oxygen in the water, fish life dies.

The research

Taking these problems into account, the researchers carried out a comparative study of purines and mineral fertilisers. It was clear from the results that the purines performed more slowly than the fertilisers, but that both are equally contaminant as regards gas emissions and ability to pollute water. Thus, it cannot be said that one is “better” than the other.

A second stage involved the analysis of the soil characteristics. A comparison between grazing pastures and fields under cultivation. From this study, it was clear that grazing pastures are more prone to gas emissions and, on the other hand, on cultivated land nitrate is more likely to reach and contaminate water.

Finally, the researchers are analysing the inhibitors of the micro-organisms which produce nitrates, nitrous oxide and nitric oxide. This is in order to have lower gas emissions and less nitrate in water. They are currently analysing the inhibitors to see if they also influence vegetable growth, measuring their capacity as inhibitors, and observing any change in crop production and measuring gas emissions.
There is still considerable research to be carried out.

Contact :
Garazi Andonegi
Elhuyar Fundazioa
(+34) 943363040

Garazi Andonegi | BasqueResearch
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>