Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conservation of the natural land resources of the Mekong delta

27.11.2002


Physical fertility of typical Mekong delta soils (Vietnam) and land suitability assessment for alternative crops with rice cultivation



Most of the soils in the Mekong delta, Vietnam are formed and developed during the Holocene period. The first Viet people came to reclaim and exploit this plain at the beginning of the 17th century. As a result, in the middle of the 19th century, the Mekong delta had become the largest region of agricultural production, essentially rice produce for marketing purposes. Around 1980 three rice crops in a year were applied. That system continued to increase with time within the recent past 10 years. This land use system has mainly enlarged on the areas along Hau and Tien river.

Nowadays, in the Mekong delta, rice yield and production in the developing and well developed alluvial soil groups tend to be stable. However, there is a tendency to gradual decrease year to year, although chemical fertilizers and other amendments were intensively applied. This study is carried out in order to conserve the natural land resources of the Mekong delta. The study focuses and evaluates mainly physical soil characteristics which are related to physical soil degradation of the selected major soil groups in the area of mono and intensive rice cultivation as Chau Thanh (Tra Vinh province), Vung Liem (Vinh Long province), Cai Lay (Tien Giang province), Cao Lanh (Dong Thap province), Tan An (Long An province), Phung Hiep (Can Tho province), Vinh Chau (Soc Trang province), O Mon (Can Tho province), Tinh Bien (An Giang province), and Moc Hoa (Long An province).


A quantitative land evaluation is carried out for some alternative crops (soybean, mungbean, maize and cotton) in order to change and develop a new land utilization type for sustainable agricultural production. Results show that soil compaction, the so-called “plow pan” has already existed between 20-40 cm soil depth and its thickness varies from 35-50 cm in the intensive rice cult!ivation area. Soil resistance penetration tends to increase from 40 cm to 100 cm in the soil profile and its value varies in the range of 0.8-1.2 MPa. Infiltration rate is low in the topsoil (average 0.8 cm/hr) and very low in the subsoils. Surface hardsetting and subsoil plinthization exist in the Degraded Grey Soils and sodification is found in the area of saline intrusion. Soil aggregate stability over 10 study locations is low and it is strongly influenced by soil organic matter and soil texture. The value of pF2-pF2.5 is approximately representing the matric head at field capacity. The volumetric water content at wilting point is 0.05 cm_/cm_ and 0.25 cm_/cm_ for loamy sand and heavy clay textured soils respectively. About 62 % of the cases, in rice intensive area, show a cumulative available soil water storage between 100-120 mm water at 0-50 cm soil depth, and it will be mainly lost by evaporation. Due to the intensive rice cultivation, local farmers usually irrigate the fields year around. In combination with a shallow low water table level (50-80 cm from soil surface) in the rice area, the soil water storage in the subsoils is not depleted to the wilting point even in the dry season and that happens on most of the study locations.

Muscovite is a dominant clay mineral in recent alluvial soils and kaolinite is a main soil mineral in old alluvial soils and soils derived from hard rock of the mountainous area. Soil compaction, soil hardsetting, plinthization, nutrient depletion, sodification and acidification (from oxidation of pyrite) are the main soil degradation types found in the different study locations. Soil compaction tends to increase in the existing mono-rice cultivation and it is a main soil constraint influencing to the crop yield and soil productivity in future.Soybean represents the best perspective crop to be alternated in the area of intensive rice cultivation and also suitable for the other areas of the study locations. However, few soil constraints need to be reclaimed and improved, the crop yield can reach more than 2 tons/ha. Cotton and maize can be planted in saline and alkaline soils. Organic matter, balanced mineral fertilization, soil preparation under the proper moisture condition and alternative land use application are the necessary activities to be done to conserve soil resources, to improve the rice yield and to develop a sustainable agricultural production in the Mekong delta.


The obtained results will help and support to the local farmers and even local government, specially the department of agriculture and rural development, in the Mekong delta, Vietnam to select and to develop the adapted land utilization types and the proper soil management packages for sustainable agricultural production at the present time and in future.

Khoa Le Van | alfa

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>