Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conservation of the natural land resources of the Mekong delta

27.11.2002


Physical fertility of typical Mekong delta soils (Vietnam) and land suitability assessment for alternative crops with rice cultivation



Most of the soils in the Mekong delta, Vietnam are formed and developed during the Holocene period. The first Viet people came to reclaim and exploit this plain at the beginning of the 17th century. As a result, in the middle of the 19th century, the Mekong delta had become the largest region of agricultural production, essentially rice produce for marketing purposes. Around 1980 three rice crops in a year were applied. That system continued to increase with time within the recent past 10 years. This land use system has mainly enlarged on the areas along Hau and Tien river.

Nowadays, in the Mekong delta, rice yield and production in the developing and well developed alluvial soil groups tend to be stable. However, there is a tendency to gradual decrease year to year, although chemical fertilizers and other amendments were intensively applied. This study is carried out in order to conserve the natural land resources of the Mekong delta. The study focuses and evaluates mainly physical soil characteristics which are related to physical soil degradation of the selected major soil groups in the area of mono and intensive rice cultivation as Chau Thanh (Tra Vinh province), Vung Liem (Vinh Long province), Cai Lay (Tien Giang province), Cao Lanh (Dong Thap province), Tan An (Long An province), Phung Hiep (Can Tho province), Vinh Chau (Soc Trang province), O Mon (Can Tho province), Tinh Bien (An Giang province), and Moc Hoa (Long An province).


A quantitative land evaluation is carried out for some alternative crops (soybean, mungbean, maize and cotton) in order to change and develop a new land utilization type for sustainable agricultural production. Results show that soil compaction, the so-called “plow pan” has already existed between 20-40 cm soil depth and its thickness varies from 35-50 cm in the intensive rice cult!ivation area. Soil resistance penetration tends to increase from 40 cm to 100 cm in the soil profile and its value varies in the range of 0.8-1.2 MPa. Infiltration rate is low in the topsoil (average 0.8 cm/hr) and very low in the subsoils. Surface hardsetting and subsoil plinthization exist in the Degraded Grey Soils and sodification is found in the area of saline intrusion. Soil aggregate stability over 10 study locations is low and it is strongly influenced by soil organic matter and soil texture. The value of pF2-pF2.5 is approximately representing the matric head at field capacity. The volumetric water content at wilting point is 0.05 cm_/cm_ and 0.25 cm_/cm_ for loamy sand and heavy clay textured soils respectively. About 62 % of the cases, in rice intensive area, show a cumulative available soil water storage between 100-120 mm water at 0-50 cm soil depth, and it will be mainly lost by evaporation. Due to the intensive rice cultivation, local farmers usually irrigate the fields year around. In combination with a shallow low water table level (50-80 cm from soil surface) in the rice area, the soil water storage in the subsoils is not depleted to the wilting point even in the dry season and that happens on most of the study locations.

Muscovite is a dominant clay mineral in recent alluvial soils and kaolinite is a main soil mineral in old alluvial soils and soils derived from hard rock of the mountainous area. Soil compaction, soil hardsetting, plinthization, nutrient depletion, sodification and acidification (from oxidation of pyrite) are the main soil degradation types found in the different study locations. Soil compaction tends to increase in the existing mono-rice cultivation and it is a main soil constraint influencing to the crop yield and soil productivity in future.Soybean represents the best perspective crop to be alternated in the area of intensive rice cultivation and also suitable for the other areas of the study locations. However, few soil constraints need to be reclaimed and improved, the crop yield can reach more than 2 tons/ha. Cotton and maize can be planted in saline and alkaline soils. Organic matter, balanced mineral fertilization, soil preparation under the proper moisture condition and alternative land use application are the necessary activities to be done to conserve soil resources, to improve the rice yield and to develop a sustainable agricultural production in the Mekong delta.


The obtained results will help and support to the local farmers and even local government, specially the department of agriculture and rural development, in the Mekong delta, Vietnam to select and to develop the adapted land utilization types and the proper soil management packages for sustainable agricultural production at the present time and in future.

Khoa Le Van | alfa

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>