Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conservation of the natural land resources of the Mekong delta

27.11.2002


Physical fertility of typical Mekong delta soils (Vietnam) and land suitability assessment for alternative crops with rice cultivation



Most of the soils in the Mekong delta, Vietnam are formed and developed during the Holocene period. The first Viet people came to reclaim and exploit this plain at the beginning of the 17th century. As a result, in the middle of the 19th century, the Mekong delta had become the largest region of agricultural production, essentially rice produce for marketing purposes. Around 1980 three rice crops in a year were applied. That system continued to increase with time within the recent past 10 years. This land use system has mainly enlarged on the areas along Hau and Tien river.

Nowadays, in the Mekong delta, rice yield and production in the developing and well developed alluvial soil groups tend to be stable. However, there is a tendency to gradual decrease year to year, although chemical fertilizers and other amendments were intensively applied. This study is carried out in order to conserve the natural land resources of the Mekong delta. The study focuses and evaluates mainly physical soil characteristics which are related to physical soil degradation of the selected major soil groups in the area of mono and intensive rice cultivation as Chau Thanh (Tra Vinh province), Vung Liem (Vinh Long province), Cai Lay (Tien Giang province), Cao Lanh (Dong Thap province), Tan An (Long An province), Phung Hiep (Can Tho province), Vinh Chau (Soc Trang province), O Mon (Can Tho province), Tinh Bien (An Giang province), and Moc Hoa (Long An province).


A quantitative land evaluation is carried out for some alternative crops (soybean, mungbean, maize and cotton) in order to change and develop a new land utilization type for sustainable agricultural production. Results show that soil compaction, the so-called “plow pan” has already existed between 20-40 cm soil depth and its thickness varies from 35-50 cm in the intensive rice cult!ivation area. Soil resistance penetration tends to increase from 40 cm to 100 cm in the soil profile and its value varies in the range of 0.8-1.2 MPa. Infiltration rate is low in the topsoil (average 0.8 cm/hr) and very low in the subsoils. Surface hardsetting and subsoil plinthization exist in the Degraded Grey Soils and sodification is found in the area of saline intrusion. Soil aggregate stability over 10 study locations is low and it is strongly influenced by soil organic matter and soil texture. The value of pF2-pF2.5 is approximately representing the matric head at field capacity. The volumetric water content at wilting point is 0.05 cm_/cm_ and 0.25 cm_/cm_ for loamy sand and heavy clay textured soils respectively. About 62 % of the cases, in rice intensive area, show a cumulative available soil water storage between 100-120 mm water at 0-50 cm soil depth, and it will be mainly lost by evaporation. Due to the intensive rice cultivation, local farmers usually irrigate the fields year around. In combination with a shallow low water table level (50-80 cm from soil surface) in the rice area, the soil water storage in the subsoils is not depleted to the wilting point even in the dry season and that happens on most of the study locations.

Muscovite is a dominant clay mineral in recent alluvial soils and kaolinite is a main soil mineral in old alluvial soils and soils derived from hard rock of the mountainous area. Soil compaction, soil hardsetting, plinthization, nutrient depletion, sodification and acidification (from oxidation of pyrite) are the main soil degradation types found in the different study locations. Soil compaction tends to increase in the existing mono-rice cultivation and it is a main soil constraint influencing to the crop yield and soil productivity in future.Soybean represents the best perspective crop to be alternated in the area of intensive rice cultivation and also suitable for the other areas of the study locations. However, few soil constraints need to be reclaimed and improved, the crop yield can reach more than 2 tons/ha. Cotton and maize can be planted in saline and alkaline soils. Organic matter, balanced mineral fertilization, soil preparation under the proper moisture condition and alternative land use application are the necessary activities to be done to conserve soil resources, to improve the rice yield and to develop a sustainable agricultural production in the Mekong delta.


The obtained results will help and support to the local farmers and even local government, specially the department of agriculture and rural development, in the Mekong delta, Vietnam to select and to develop the adapted land utilization types and the proper soil management packages for sustainable agricultural production at the present time and in future.

Khoa Le Van | alfa

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>