Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First soybeans grown in space return to Earth

22.10.2002


In unprecedented space research, DuPont scientists have attained a significant scientific accomplishment regarding the future development of soybeans – one of the most consumed crops in the world today.


Last May, scientists Bruce Link and Guillermo Tellez prepared soybean seeds to be sent to the International Space Station


DuPont scientist Tom Corbin and University of Wisconsin-Madison scientist Weijia Zhou examine the harvested plants after the 97-day experiment



During a research mission that concluded with the return of Space Shuttle Atlantis Friday, soybean seeds planted and nurtured by DuPont scientists germinated, developed into plants, flowered, and produced new seedpods in space. The 97-day growth research initiative is the first-ever to complete a major crop growth cycle in space – from planting seeds to growing new seeds. The research mission aboard the International Space Station demonstrates that space crop production can be accomplished, potentially supporting long-term human presence in space. Through video monitoring and data sent from the International Space Station, DuPont scientists also examined the effects of zero-gravity and other elements in space regarding plant growth.

The soybeans returned to Earth Friday afternoon aboard the Atlantis. In June, DuPont subsidiary, Pioneer Hi-Bred International, Inc., with the Wisconsin Center for Space Automation and Robotics (WCSAR) -- a NASA Commercial Space Center at the University of Wisconsin-Madison -- launched the soybean seed experiment on Space Shuttle Endeavour. As part of the research mission, Pioneer-brand soybean seeds grew in a specialized tray within a growth chamber developed by WCSAR. Pioneer scientists monitored the soybeans’ growth daily and provided nutrient adjustments to facilitate growth.


With the soybeans and seeds now on Earth, Pioneer and WCSAR will analyze the harvested seeds to determine if they have improved oil, protein, carbohydrates or secondary metabolites that could benefit farmers and consumers. Seeds exhibiting unique and desirable qualities will be planted by Pioneer scientists to determine if the traits can be inherited in future generations. Pioneer will identify the genetics of those traits and use that information to further improve the soybeans’ efficiency and profitability for farmers.

According to the United Soybean Board, soybeans are the largest single source of protein meal and vegetable oil in the human diet. Domestically, soybeans provide 80 percent of the edible consumption of fats and oils in the United States. In 2000, 54 percent of the world’s soybean trade originated from the United States with soybean and product exports totaling more than $6.6 billion. The world’s largest seed company, Pioneer, is the brand leader in soybeans with more than 100 product varieties on the market.

"This was an incredible scientific opportunity for us and our partners," said Dr. Tom Corbin, DuPont researcher on the project. "Studying the effects of soybean plants grown in space will help us expand our knowledge of soybeans and facilitate continued improvement of soybean germplasm for farmers."

DuPont has a rich tradition of space initiatives, dating to NASA’s origination 33 years ago. For example, when Neil Armstrong walked on the moon in 1969, he wore 25 separate layers – 23 of those layers were DuPont materials. In 1984, Pioneer corn seeds were on board a Challenger shuttle launch. The seeds, which were not planted while in space, were used in science-based initiatives after returning to Earth.

"Innovation has been the hallmark of DuPont for more than 200 years," said Chief Science and Technology Officer Dr. Thomas M. Connelly. "As a science company, we know that future research opportunities may come from totally different venues and needs as we look ahead. The discovery process often requires exploring in unprecedented avenues to unleash the next wave of innovation and we are committed to discovering new and meaningful innovation wherever it is."

WCSAR makes space available to industry in the interest of development and commercialization of new products and processes. It provides controlled environment technologies and facilities, plant genetic transformation technologies, enhanced biosynthesis technologies, as well as robotic and automated technologies.

During 2002, DuPont is celebrating its 200th year of scientific achievement and innovation — providing products and services that improve the lives of people everywhere. Based in Wilmington, Del., DuPont delivers science-based solutions for markets that make a difference in people’s lives in food and nutrition; health care; apparel; home and construction; electronics; and transportation. Pioneer Hi-Bred International, Inc., a subsidiary of DuPont, is the world’s leading source of customized solutions for farmers, livestock producers, and grain and oilseed processors. With headquarters in Des Moines, Iowa, Pioneer provides access to advanced plant genetics, crop protection solutions and quality crop systems to customers in nearly 70 countries.

Anthony Farina | EurekAlert!
Further information:
http://www.dupont.com/

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>