Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First soybeans grown in space return to Earth

22.10.2002


In unprecedented space research, DuPont scientists have attained a significant scientific accomplishment regarding the future development of soybeans – one of the most consumed crops in the world today.


Last May, scientists Bruce Link and Guillermo Tellez prepared soybean seeds to be sent to the International Space Station


DuPont scientist Tom Corbin and University of Wisconsin-Madison scientist Weijia Zhou examine the harvested plants after the 97-day experiment



During a research mission that concluded with the return of Space Shuttle Atlantis Friday, soybean seeds planted and nurtured by DuPont scientists germinated, developed into plants, flowered, and produced new seedpods in space. The 97-day growth research initiative is the first-ever to complete a major crop growth cycle in space – from planting seeds to growing new seeds. The research mission aboard the International Space Station demonstrates that space crop production can be accomplished, potentially supporting long-term human presence in space. Through video monitoring and data sent from the International Space Station, DuPont scientists also examined the effects of zero-gravity and other elements in space regarding plant growth.

The soybeans returned to Earth Friday afternoon aboard the Atlantis. In June, DuPont subsidiary, Pioneer Hi-Bred International, Inc., with the Wisconsin Center for Space Automation and Robotics (WCSAR) -- a NASA Commercial Space Center at the University of Wisconsin-Madison -- launched the soybean seed experiment on Space Shuttle Endeavour. As part of the research mission, Pioneer-brand soybean seeds grew in a specialized tray within a growth chamber developed by WCSAR. Pioneer scientists monitored the soybeans’ growth daily and provided nutrient adjustments to facilitate growth.


With the soybeans and seeds now on Earth, Pioneer and WCSAR will analyze the harvested seeds to determine if they have improved oil, protein, carbohydrates or secondary metabolites that could benefit farmers and consumers. Seeds exhibiting unique and desirable qualities will be planted by Pioneer scientists to determine if the traits can be inherited in future generations. Pioneer will identify the genetics of those traits and use that information to further improve the soybeans’ efficiency and profitability for farmers.

According to the United Soybean Board, soybeans are the largest single source of protein meal and vegetable oil in the human diet. Domestically, soybeans provide 80 percent of the edible consumption of fats and oils in the United States. In 2000, 54 percent of the world’s soybean trade originated from the United States with soybean and product exports totaling more than $6.6 billion. The world’s largest seed company, Pioneer, is the brand leader in soybeans with more than 100 product varieties on the market.

"This was an incredible scientific opportunity for us and our partners," said Dr. Tom Corbin, DuPont researcher on the project. "Studying the effects of soybean plants grown in space will help us expand our knowledge of soybeans and facilitate continued improvement of soybean germplasm for farmers."

DuPont has a rich tradition of space initiatives, dating to NASA’s origination 33 years ago. For example, when Neil Armstrong walked on the moon in 1969, he wore 25 separate layers – 23 of those layers were DuPont materials. In 1984, Pioneer corn seeds were on board a Challenger shuttle launch. The seeds, which were not planted while in space, were used in science-based initiatives after returning to Earth.

"Innovation has been the hallmark of DuPont for more than 200 years," said Chief Science and Technology Officer Dr. Thomas M. Connelly. "As a science company, we know that future research opportunities may come from totally different venues and needs as we look ahead. The discovery process often requires exploring in unprecedented avenues to unleash the next wave of innovation and we are committed to discovering new and meaningful innovation wherever it is."

WCSAR makes space available to industry in the interest of development and commercialization of new products and processes. It provides controlled environment technologies and facilities, plant genetic transformation technologies, enhanced biosynthesis technologies, as well as robotic and automated technologies.

During 2002, DuPont is celebrating its 200th year of scientific achievement and innovation — providing products and services that improve the lives of people everywhere. Based in Wilmington, Del., DuPont delivers science-based solutions for markets that make a difference in people’s lives in food and nutrition; health care; apparel; home and construction; electronics; and transportation. Pioneer Hi-Bred International, Inc., a subsidiary of DuPont, is the world’s leading source of customized solutions for farmers, livestock producers, and grain and oilseed processors. With headquarters in Des Moines, Iowa, Pioneer provides access to advanced plant genetics, crop protection solutions and quality crop systems to customers in nearly 70 countries.

Anthony Farina | EurekAlert!
Further information:
http://www.dupont.com/

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>