Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beans and fungus may improve corn crop without expensive fertilizer

07.08.2002


Corn, the preferred staple crop in many countries, requires large amounts of nitrogen for its growth. Usually fertilizer is necessary to sustain good yields. A Penn State graduate student, Ylva Besmer, is trying to find ways to improve corn yield for subsistence farmers in Zimbabwe without fertilizer.



"The government of Zimbabwe no longer provides a subsidy for fertilizer, resulting in significantly lower corn yields" says Besmer, a doctoral candidate in ecology. "The old-fashion use of legumes (members of the bean family) in crop rotations may prove to be a solution to this problem because of their ability to fix nitrogen and, thus, provide nitrogen for subsequently grown corn. We have shown in Zimbabwe, however, that legume growth and nitrogen fixation can be limited by the availability of phosphorus in the soil."

In order to improve nitrogen fixation in legumes, somehow phosphorus availability has to be increased.


"Mycorrhizal fungi are common in nature. They colonize the roots of many plant species including legumes. These fungi live symbiotically with their hosts, absorbing phosphorus from the soil, and transporting it to the root systems. In preliminary tests we have shown that enhanced mycorrhizal colonization of a number of legumes grown in soil from Zimbabwe increases nitrogen content indirectly by increasing phosphorus uptake," she told attendees today (Aug. 7) at the annual meeting of the Ecological Society of America in Tucson, Ariz.

"We first used peanut because it is a legume that is commonly grown by subsistence farmers. Peanut growth and nitrogen content was strongly limited by phosphorus availability, and by amending the soil with mycorrhizal fungi, peanut nitrogen content was significantly increased," reported Besmer.

The Penn State researcher is working with Roger Koide, professor of horticultural ecology, and Robert Myers, soil scientist with the International Crops Research Institute for the Semi-arid Tropics (ICRISAT), to find ways to increase the abundance of the beneficial mycorrhizal fungi in Zimbabwean soils.

"In temperate agro-ecosystems, mycorrhizal fungal abundance can be increased by reducing fallow periods and tillage," explained Besmer. "We want to take these lessons learned from temperate systems and try to apply them appropriately to the semi-arid tropics to increase mycorrhizal fungal activity.

"While peanut was a logical crop to study, it may not be the best legume to use in Zimbabwe to enhance soil fertility for corn production because most of the nitrogen resides in the nut, which is harvested and removed from the soil. Another legume, commonly called lablab, looks promising because it grows more vigorously and its stems and leaves contain more nitrogen," he adds. "The best way to use any legume to increase soil fertility is to plow most of the plant back into the soil or let animals graze on the plants and allow their manure naturally to fertilize the field. For subsistence farmers in the semi-arid tropics, the proper selection of legumes coupled with simple practices to increase the abundance of naturally occurring mycorrhizal fungi could sustain or increase corn yields without fertilizers."


The National Geographic Society, Penn State and ICRISAT support the research of Ylva Besmer.

Andrea Elyse Messer | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>