Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beans and fungus may improve corn crop without expensive fertilizer

07.08.2002


Corn, the preferred staple crop in many countries, requires large amounts of nitrogen for its growth. Usually fertilizer is necessary to sustain good yields. A Penn State graduate student, Ylva Besmer, is trying to find ways to improve corn yield for subsistence farmers in Zimbabwe without fertilizer.



"The government of Zimbabwe no longer provides a subsidy for fertilizer, resulting in significantly lower corn yields" says Besmer, a doctoral candidate in ecology. "The old-fashion use of legumes (members of the bean family) in crop rotations may prove to be a solution to this problem because of their ability to fix nitrogen and, thus, provide nitrogen for subsequently grown corn. We have shown in Zimbabwe, however, that legume growth and nitrogen fixation can be limited by the availability of phosphorus in the soil."

In order to improve nitrogen fixation in legumes, somehow phosphorus availability has to be increased.


"Mycorrhizal fungi are common in nature. They colonize the roots of many plant species including legumes. These fungi live symbiotically with their hosts, absorbing phosphorus from the soil, and transporting it to the root systems. In preliminary tests we have shown that enhanced mycorrhizal colonization of a number of legumes grown in soil from Zimbabwe increases nitrogen content indirectly by increasing phosphorus uptake," she told attendees today (Aug. 7) at the annual meeting of the Ecological Society of America in Tucson, Ariz.

"We first used peanut because it is a legume that is commonly grown by subsistence farmers. Peanut growth and nitrogen content was strongly limited by phosphorus availability, and by amending the soil with mycorrhizal fungi, peanut nitrogen content was significantly increased," reported Besmer.

The Penn State researcher is working with Roger Koide, professor of horticultural ecology, and Robert Myers, soil scientist with the International Crops Research Institute for the Semi-arid Tropics (ICRISAT), to find ways to increase the abundance of the beneficial mycorrhizal fungi in Zimbabwean soils.

"In temperate agro-ecosystems, mycorrhizal fungal abundance can be increased by reducing fallow periods and tillage," explained Besmer. "We want to take these lessons learned from temperate systems and try to apply them appropriately to the semi-arid tropics to increase mycorrhizal fungal activity.

"While peanut was a logical crop to study, it may not be the best legume to use in Zimbabwe to enhance soil fertility for corn production because most of the nitrogen resides in the nut, which is harvested and removed from the soil. Another legume, commonly called lablab, looks promising because it grows more vigorously and its stems and leaves contain more nitrogen," he adds. "The best way to use any legume to increase soil fertility is to plow most of the plant back into the soil or let animals graze on the plants and allow their manure naturally to fertilize the field. For subsistence farmers in the semi-arid tropics, the proper selection of legumes coupled with simple practices to increase the abundance of naturally occurring mycorrhizal fungi could sustain or increase corn yields without fertilizers."


The National Geographic Society, Penn State and ICRISAT support the research of Ylva Besmer.

Andrea Elyse Messer | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>