Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet Citrus Varieties with Deep Orange Rind Released by UC Riverside

21.06.2002


Three new varieties of tangerines - the TDE2, TDE3, and TDE4 - are the University of California’s most recent citrus varieties to be released for commercial production. The tangerines, which are complex hybrids, are siblings since they share the same parents. The varieties will be patented and eventually be given trademarked names. The three tangerines are large fruited compared to other varieties, have a sweet taste, and bear fruit with a deep orange rind.

"While the new tangerines share many similarities, they also differ from each other in their characteristics," said Mikeal Roose, professor of genetics at UC Riverside. "They do have one outstanding attribute however: all three are very low seeded, less than one seed per fruit, even when the trees are planted with other varieties. This is a highly-sought attribute for the fresh fruit market."

Although the crosses were made in 1973, it was not until the 1980s that now-retired UC Riverside Professors Robert K. Soost and James W. Cameron recognized the potential of these individual seedlings for commercial development.



Each seedling produced from a cross between two citrus varieties has a unique genetic makeup. "You can think of citrus genetics as similar to human genetics," said Roose, who was assisted in developing the new tangerines by UC Riverside staff scientist Tim Williams. "When you cross a mother and a father, the children may have some similarities but they are different from one another."

The TDE2, TDE3, and TDE4 are now being released for commercialization in California under non-exclusive licensing agreements with the University of California. Licensed growers and wholesale nurseries in California can obtain budwood, propagate the varieties and freely market the resulting trees and fruit. The University of California does not produce trees for sale to the public. It will take a year or two before trees become available for planting, and another two or three years before the young trees produce much fruit.

"The tangerines also hold very well on the trees," said Roose. "In Riverside, the TDE2 is good-tasting when picked from the tree anytime between February and May; the TDE3 is good-tasting when picked from the tree anytime between January and March; for the TDE4, the range is February to April."

There are, however, some unknowns associated with the new tangerines. For example, it is not clear how well the trees will yield when isolated from other citrus plants. "Some citrus require pollination or need stimuli like plant hormone sprays to set good crops," said Roose. "We hope to find out in the next two years how our new varieties perform." Like many tangerines, the new varieties also have ’alternate bearing’ - a big crop one year followed by a much lower yield the next year(s). When the crops are very light, fruit size tends to get large and the rind gets rough and bumpy, Roose noted.

"The three new varieties are also quite thorny," said Roose. "This is a common characteristic of new hybrids. Moreover, the tree size for all three varieties is large for tangerines. All three new varieties grow more like orange trees, we’ve found." Characteristics of fruit of the three new varieties are listed in Table 1.

  TDE2 TDE3 TDE4
Average fruit size
for a tangerine
large medium-large large
Mean width 2.95 in (75 mm) 2.60 in (66 mm) 2.95 in (75 mm)
Mean height 2.32 in (59 mm) 2.20 in (56 mm) 2.30 in (58 mm)
Mean weight 6.5 oz (185 g) 4.75 oz (135 g) 6.0 oz (175 g)
Avg. juice content (%) 49 48 42


Table 1. Characteristics of the TDE2, the TDE3, and the TDE4. All three tangerines have an attractive deep orange rind color, have a rich fruit flavor and are marked by the virtual absence of seeds even in mixed plantings.

"We are very excited about the new tangerines," said Roose. "Besides having considerable potential as commercial varieties, all three should be of great interest to backyard citrus growers looking to add interesting new tangerines to their collections."

UC Riverside scientists have a long tradition in citrus research. In 1907, the University of California established the Citrus Experiment Station in Riverside to support Southern California’s growing citrus industry with scientific data to improve production. In 1917, the station moved to its present site, which would also become a new University of California campus in 1954.

Now known as the Citrus Research Center-Agricultural Experiment Station, the work of the center has grown to include all aspects of agricultural production in arid and semi-arid subtropical lands. Research on citrus production and development of new varieties remains a major focus of UC Riverside agricultural research.

UC Riverside is also home to the University of California Citrus Variety Collection of some 900 varieties that have been used extensively to solve citrus disease problems and improve commercial varieties.


The University of California, Riverside, established in 1954, offers undergraduate and graduate education to nearly 15,000 students. It is a member of the 10-campus UC system, which is the largest public research university system in the world. The picturesque 1,200-acre UC Riverside campus is located at the foot of the Box Springs Mountains near downtown Riverside, California.

Contact: melissa.freed@ucop.edu
Contact: anne@citrusresearch.org

News Media Contact: Iqbal Pittalwala
909-787-2645
e-mail: iqbal@citrus.ucr.edu

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>