Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Black gold agriculture' may revolutionize farming, curb global warming

11.04.2008
Fifteen hundred years ago, tribes people from the central Amazon basin mixed their soil with charcoal derived from animal bone and tree bark. Today, at the site of this charcoal deposit, scientists have found some of the richest, most fertile soil in the world.

Now this ancient, remarkably simple farming technique seems far ahead of the curve, holding promise as a carbon-negative strategy to rein in world hunger as well as greenhouse gases.

At the 235th national meeting of the American Chemical Society, scientists report that charcoal derived from heated biomass has an unprecedented ability to improve the fertility of soil — one that surpasses compost, animal manure, and other well-known soil conditioners.

They also suggest that this so-called “biochar” profoundly enhances the natural carbon seizing ability of soil. Dubbed “black gold agriculture,” scientists say this “revolutionary” farming technique can provide a cheap, straight-forward strategy to reduce greenhouse gases by trapping them in charcoal-laced soil.

“Charcoal fertilization can permanently increase soil organic matter content and improve soil quality, persisting in soil for hundreds to thousands of years,” Mingxin Guo, Ph.D., and colleagues report. In what they describe as a “new and pioneering” ACS report — the first systematic investigation of soil improvement by charcoal fertilization — Guo found that soils receiving charcoal produced from organic wastes were much looser, absorbed significantly more water and nutrients and produced higher crop biomass. The authors, with Delaware State University, say “the results demonstrate that charcoal amendment is a revolutionary approach for long-term soil quality improvement.”

Soil deterioration from depletion of organic matter is an increasingly serious global problem that contributes to hunger and malnutrition. Often a result of unsustainable farming, overuse of chemical fertilizers and drought, the main weapons to combat the problem —compost, animal manure and crop debris — decompose rapidly.

“Earth’s soil is the largest terrestrial pool of carbon,” Guo said. “In other words, most of the earth’s carbon is fixed in soil.” But if this soil is intensively cultivated by tillage and chemical fertilization, organic matter in soil will be quickly decomposed into carbon dioxide by soil microbes and released into the atmosphere, leaving the soil compacted and nutrient-poor.

Applying raw organic materials to soil only provides a temporary solution, since the applied organic matter decomposes quickly. Converting this unutilized raw material into biochar, a non-toxic and stable fertilizer, could keep carbon in the soil and out of the atmosphere, says Guo.

“Speaking in terms of fertility and productivity, the soil quality will be improved. It is a long-term effect. After you apply it once, it will be there for hundreds of years,” according to Guo. With its porous structure and high nutrient- and water-holding capabilities, biochar could become an extremely attractive option for commercial farmers and home gardeners looking for long-term soil improvement.

The researchers planted winter wheat in pots of soil in a greenhouse. Some pots were amended with two percent biochar, generated from readily available ingredients like tree leaves, corn stalk and wood chips. The other pots contained ordinary soil.

The biochar-infused soil showed vastly improved germination and growing rates compared to regular soil. Guo says that even a one-percent charcoal treatment would lead to improved crop yield.

Guo is “positive” that this ground-breaking farming technique can help feed countries with poor soil quality. “We hope this technology will be extended worldwide,” says Guo.

“The production of current arable land could be significantly improved to provide more food and fiber for the growing populations. We want to call it the second agricultural revolution, or black gold revolution!”

He suggests that charcoal production has been practiced for at least 3000 years. But until now, nobody realized that this charcoal could improve soil fertility until archaeologists stumbled on the aforementioned Amazonian soil several years ago.

Biochar production is straightforward, involving a heating process known as pyrolysis. First, organic residue such as tree leaves and wood chips is packed into a metal container and sealed. Then, through a small hole on top, the container is heated and the material burns. The raw organic matter is transformed into black charcoal. Smokes generated during pyrolysis can also be collected and cooled down to form bio-oil, a renewable energy source, says Guo.

In lieu of patenting biochar, Guo says he is most interested in extending the technology into practice as soon as possible. To that end, his colleagues at Delaware State University are investigating a standardized production procedure for biochar. They also foresee long-term field studies are needed to validate and demonstrate the technology. Guo noted that downsides of biochar include transportation costs resulting from its bulk mass and a need to develop new tools to spread the granular fertilizer over large tracts of farmland.

The researchers are about to embark on a five-year study on the effect of “black gold” on spinach, green peppers, tomatoes and other crops. They seek the long-term effects of biochar fertilization on soil carbon changes, crop productivity and its effect of the soil microorganism community.

“Through this long-term work, we will show to people that biochar fertilization will significantly change our current conventional farming concepts,” says Guo.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>