Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soybean varieties viable in southern Indiana, resistant to root-knot nematode

25.03.2008
Purdue University researchers have identified several soybean varieties that grow well in areas of the Midwest like southern Indiana and are resistant to root-knot nematodes, a plant-destroying parasite with a recently confirmed presence in that part of the state.

The researchers verified that resistance in soybeans to one nematode parasite doesn't predict how well the plant will fight off another nematode species, said Andreas Westphal, assistant professor of plant pathology. Some of the varieties also were resistant to soybean cyst nematode.

"We were trying to identify soybean lines that will grow in Indiana and are root-knot nematode resistant," said Westphal, who is senior author of the report published online in the journal Crop Science and will be published in the March-April print issue.

The research team recently published a paper in Plant Health Progress that details the distribution of root-knot nematodes on soybeans in southwestern Indiana.

"We also wanted to find varieties that are nematode-tolerant," Westphal said. "In other words, the nematode is present in the soil, but the plant doesn't suffer a lot of damage."

Root-knot nematodes, including the species Meloidogyne incognita, infect soybeans in sandy loam soil and also reproduce on corn and the highly root-knot nematode-sensitive watermelon, two other major cash crops in the southern part of Indiana. The area, along with additional parts of the state, also suffers from other nematodes, including the soybean cyst nematode (Heterodera glycines). Root-knot nematodes are responsible for a loss of 93,000 tons of soybeans annually in the United States.

Other than resistant and tolerant plants, available methods to rid fields of the destructive organisms are not always practical or economically feasible, Westphal said. For example, chemicals that are effective against nematodes can be dangerous to the environment, people and animals.

A major concern for farmers is that soybeans, corn and watermelon are all susceptible to root-knot nematodes. Most farmers in southern Indiana plant crops in a soybean-corn-watermelon rotation. If the parasites infect the soybeans, then the organisms will be in the soil and can damage the subsequent crops planted in the same field.

"The availability of nematode-resistant varieties is important, not only for soybean production, but also for the whole rotation sequence because a resistant soybean crop will reduce the number of nematodes in the soil," Westphal said.

The study involved planting eight soybean strains in a commercial field near Vincennes, Ind. These were plant varieties that already were known to grow well in soil and weather similar to that found in southern Indiana. The field had a history of root-knot and soybean cyst nematode infestations. Westphal and his team also tested some of the same soybean lines in a field in which they introduced the nematodes and in a greenhouse where they used similar soil containing the root-knot nematodes.

Using plants known to be resistant to soybean cyst nematode, the researchers confirmed resistance to that nematode doesn't predict how resistant the plant will be to root-knot nematodes.

Although Indiana farmers previously were aware of the damage to their crops from soybean cyst nematode, it was only recently that they learned about root-knot infection of soybeans. They now know how to identify both nematodes and how these parasites damage crops.

Damage by plant-parasitic nematodes usually appears in patches in fields because where nematodes are introduced determines the infestation area. The type of soil and environmental conditions also play a role in the parasite's survival.

Both the soybean cyst and root-knot nematode feed on roots, robbing the plant of needed nutrients and water. The lemon-shaped soybean cyst nematode is easy to spot on the root because it stays on the outside. These pinhead-sized nematodes are white, then yellow, and finally become brown as they mature. The nematode-induced cysts are much smaller than the so-called "nodules," which are structures induced by the beneficial bacterium rhizobium. Rhizobium association aids the plant in nutritional nitrogen absorption.

The root-knot nematode induces big clumps, or galls, on the root that look a bit like a wart or a tree knot, and the deformations are much bigger than the signs caused by the soybean cyst nematode. The nematode galls have irregular tumorlike shapes, in contrast to the spherical shape of nodules caused by rhizobium association.

Next the researchers will try to determine varieties of cover crops that are nematode-resistant. Cover crops are used over the winter to control erosion but can provide a habitat for the parasites. This means that larger populations of the parasites are present when crops are planted in the spring.

"We hope that we can improve nematode suppression in the entire crop sequence to improve the yield of the cash crops," Westphal said.

The other authors on this paper were graduate student Greg Kruger and postdoctoral researcher Lijuan Xing, both of the Purdue Department of Botany and Plant Pathology, and Allen LeRoy, Purdue Department of Agronomy soybean breeding and genetics professional.

The Indiana Soybean Alliance; Indiana Crop Improvement Association; AG Spectrum; Purdue departments of Botany and Plant Pathology, and Agronomy; and the Purdue College of Agriculture provided support for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Andreas Westphal, (765) 496-2170, Westphal@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu
Agriculture News Page

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>