Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant reflections may be key to early detection of treatment needs

05.02.2008
When disease and insect problems in crops are visible to the naked eye, it may be too late to treat. That’s why Dr. Christian Nansen, Texas AgriLife Research entomologist, likes to take a closer look.

A hyperspectral look, that is.

Nansen, small grains entomologist at the Texas AgriLife Research and Extension Center at Lubbock, uses a hyperspectral camera to determine how light is being reflected off plant leaf surfaces. He discussed the technology at the High Plains Vegetable Conference in Canyon.

“Just like when we start having the flu, our body responds and we get a fever,” he said. “The fever is because our body is mobilizing its immune system. When a plant undergoes stress caused by diseases, insects or the environment (like drought), it will cause changes in its metabolism and that leads to subtle changes in the way it reflects light.

“We can use this camera to detect stress at an earlier stage than by visual inspection.”

For instance, Nansen said, root rot is all underground, and generally plants are half dead when the damage becomes visible.

“But if you could see it earlier, you may have time to treat for the fungus causing the problem,” he said.

The hyperspectral camera detects diseases in any plant, Nansen said. And with insect damage, the key parameter to control is early detection.

“When scouting for spider mite infestation, you have to take a lot of samples to see mites when the infestation level is low,” he said. “But with spectral imaging, you can see it earlier and it is less intrusive.”

The technology is similar to that of remote sensing, Nansen said. However, instead of putting the camera in an airplane, it is placed just over the canopy of a crop, perhaps mounted on a four-wheeled all-terrain vehicle or on the center-pivot irrigation system.

He said his research team is in the early stages of testing the technology. They are starting by collecting spectral profiles of healthy and sick plants and developing classification algorithms.

“We are using it now to do early detection of zebra chip in potatoes and cotton root rot, and also looking at spider mite stress on corn plants,” Nansen said. “We’re developing technology that we hope can work with other programs.”

Currently, potato producers must use visual symptoms of stress in the plants to detect zebra chip, a disease that has no treatment, and determine if a field should be harvested, he said.

“We want to see if we can detect the disease in the actual fields while plants are still growing,” Nansen said.

“With a potato plant, a lot of inputs and resources are needed. If we can detect an infestation early, our technology may help producers decide whether it is worthwhile to spend more resources on a given field and/or whether their potatoes should be sold for chipping or another market.”

He said because it has not been determined what causes the actual infection, he hopes to be able to use the hyperspectral process to determine when it starts to occur and what is happening with the plant at that time.

“We think we can also obtain a much higher accuracy using the reflectance technology to scan the potatoes and see how it will be after frying,” Nansen said.

The zebra chip effect causes the potato to turn brown after frying, he said. At this time is doesn’t appear to affect quality and does not show up in baking potato, but the discoloration after frying is a problem for the chipping industry.

Another possibility, he said, is to utilize the technology in plant breeding to determine genetic differences in germplasm. Seed analysis is already being done much the same when scientists look for protein content in wheat, oil content in peanuts or maturation of tomatoes.

“We have a wealth of information on reflectance technology available,” Nansen said. “But there are certain characteristics about what we do that are unique.

“We’re trying to make it relevant on a larger scale without being too expensive,” he said. “I think if we can develop some robust classification algorithms, we can do many things and automate the system if it can pass over the field.”

The technology is ripe for someone to put a complete package or system together, Nansen said, because the different computer programs have been written and could be combined into a single program with the proper funding.

Christian Nansen | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>