Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Geneticists Find Veritas in Vino: genome sequence of Pinot Noir grape revealed

19.12.2007
Viticulture, the growing of grapesVitis viniferachiefly to make wine, is an ancient form of agriculture, evidence of which has been found from the Neolithic and Early Bronze Ages. We have a detailed understanding of how nurture affects the qualities of a grape harvest leading to the concept of terroir (the range of local influences that carry over into a wine).

The nature of the grapes themselves has been less well understood but our knowledge of this is substantially increased this week by the publication in the open-access journal PLoS ONE of a high quality draft genome sequence of a Pinot Noir grape by an Italian-based multinational consortium.

The genome of the grape is spread over 19 pairs of chromosomes and is around 504.6 megabases in length. The team of researchers, led by Dr Riccardo Velasco of the Istituto Agrario di San Michele all'Adige, used a shotgun sequencing approach, which has resulted in 10.7X coverage, 4.2X using pyrosequencing and

6.5X by Sanger sequencing. At the same time, the genome of the grape chloroplast was also sequenced and, remarkably, this was found to be identical to an independently determined sequence from a different strain of Pinot Noir that was published last year.

The grape, therefore, has a relatively small genome for a crop plant, similar to that of rice or poplar trees and much smaller than that of wheat or maize. Nevertheless, sequencing the genome was complicated by the degree of heterozygosity between pairs of chromosomes, some 11.2% of the sequence differing between homologous regions. There was so much variation, in fact, that Velasco describes it as like being “in the presence of two genomes.”

Moreover, the team discovered more than two million single nucleotide polymorphisms (individual letter changes in the grape’s genetic blueprint) in 87% of the 29,585 identified genes. While this made sequencing the genome difficult, it now provides a massive library of inherent variation with which to investigate which genes influence which characteristics of the growing plant and in what ways. “It is a treasure trove,” says Brian Dilkes of the University of California, DavisGenomeCenter, “as detailed a description of a plant genome sequence as I have seen in a ‘first’ paper”.

The genome can also provide clues to the evolution of grapes. Many plant genomes, especially those of crop plants, have been produced by at least one duplication of a smaller ancestral genome. Whether this was true for grapes had been controversial but this study clearly shows that ten of the 19 chromosomes resulted from a duplication that occurred shortly after the lineage of grapes diverged from that of the model plants Arabidopsis and poplar.

The breeding of grape vines is difficult because they take several years to grow to maturity and domesticated grapes tend to have very low fertility. For this reason, grapes are usually propagated by cuttings or graftings so that vineyards are filled with hundreds of thousands of genetically identical clones. This leaves grapes highly susceptible to the emergence of aggressive microrganisms, such as phyloxera, which devastated European grape production in the 19th and early 20th century, and powdery mildew, which continues to threaten American harvests to this day.

The Pinot Noir genome will provide an invaluable tool for creating grape varieties resistant to such diseases without altering the quality of the resulting wine. Velasco and his colleagues have identified a large number of genes related to disease–resistance, 289 of which contain one or more SNPs. In spite of this, Pinot Noir remains susceptible to several fungi, bacteria and viruses possibly due to a defective system for recognition pathogen. Many of these disease-resistance genes are present in clusters whose associations with resistances or tolerances of different grape varieties to specific diseases can now be investigated. Also Pinot Noir can be crossed with many wild grapespecies providing a large reservoir of disease-resistancegenes, which can be exploited with the aid of this genome road map.

“This description of the grape genome presents an opportunity to direct genetic improvement or disease resistance,” says Brian Dilkes. “The genome sequence simultaneously identified hundreds of genes, which correspond to enzymes that produce flavor and aroma compounds. This will allow breeding for diseases resistance to proceed without disturbing the biochemistry of taste and grape quality. When I told sommelier Andrew Meadows about this recently, his reaction was, ‘Good! I would love to offer a decent Pinot for less than $30’.”

This grape genome may also have implications beyond viticulture. Grapes can be both genetically transformed and micropropogated to produce hundreds of identical clones. With the sequencing of its relatively small genome, it is well placed to become a model organism for fruit trees in general. It is, however, in the safeguarding and improvement of grape stocks that the effects of this genome will be felt most strongly. “The sequence of the grape genome,” says Velasco, “together with the large arsenal of SNP loci, now offers a tool to open a new era in the molecular breeding of grapes.”

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001326.

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>