Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Geneticists Find Veritas in Vino: genome sequence of Pinot Noir grape revealed

19.12.2007
Viticulture, the growing of grapesVitis viniferachiefly to make wine, is an ancient form of agriculture, evidence of which has been found from the Neolithic and Early Bronze Ages. We have a detailed understanding of how nurture affects the qualities of a grape harvest leading to the concept of terroir (the range of local influences that carry over into a wine).

The nature of the grapes themselves has been less well understood but our knowledge of this is substantially increased this week by the publication in the open-access journal PLoS ONE of a high quality draft genome sequence of a Pinot Noir grape by an Italian-based multinational consortium.

The genome of the grape is spread over 19 pairs of chromosomes and is around 504.6 megabases in length. The team of researchers, led by Dr Riccardo Velasco of the Istituto Agrario di San Michele all'Adige, used a shotgun sequencing approach, which has resulted in 10.7X coverage, 4.2X using pyrosequencing and

6.5X by Sanger sequencing. At the same time, the genome of the grape chloroplast was also sequenced and, remarkably, this was found to be identical to an independently determined sequence from a different strain of Pinot Noir that was published last year.

The grape, therefore, has a relatively small genome for a crop plant, similar to that of rice or poplar trees and much smaller than that of wheat or maize. Nevertheless, sequencing the genome was complicated by the degree of heterozygosity between pairs of chromosomes, some 11.2% of the sequence differing between homologous regions. There was so much variation, in fact, that Velasco describes it as like being “in the presence of two genomes.”

Moreover, the team discovered more than two million single nucleotide polymorphisms (individual letter changes in the grape’s genetic blueprint) in 87% of the 29,585 identified genes. While this made sequencing the genome difficult, it now provides a massive library of inherent variation with which to investigate which genes influence which characteristics of the growing plant and in what ways. “It is a treasure trove,” says Brian Dilkes of the University of California, DavisGenomeCenter, “as detailed a description of a plant genome sequence as I have seen in a ‘first’ paper”.

The genome can also provide clues to the evolution of grapes. Many plant genomes, especially those of crop plants, have been produced by at least one duplication of a smaller ancestral genome. Whether this was true for grapes had been controversial but this study clearly shows that ten of the 19 chromosomes resulted from a duplication that occurred shortly after the lineage of grapes diverged from that of the model plants Arabidopsis and poplar.

The breeding of grape vines is difficult because they take several years to grow to maturity and domesticated grapes tend to have very low fertility. For this reason, grapes are usually propagated by cuttings or graftings so that vineyards are filled with hundreds of thousands of genetically identical clones. This leaves grapes highly susceptible to the emergence of aggressive microrganisms, such as phyloxera, which devastated European grape production in the 19th and early 20th century, and powdery mildew, which continues to threaten American harvests to this day.

The Pinot Noir genome will provide an invaluable tool for creating grape varieties resistant to such diseases without altering the quality of the resulting wine. Velasco and his colleagues have identified a large number of genes related to disease–resistance, 289 of which contain one or more SNPs. In spite of this, Pinot Noir remains susceptible to several fungi, bacteria and viruses possibly due to a defective system for recognition pathogen. Many of these disease-resistance genes are present in clusters whose associations with resistances or tolerances of different grape varieties to specific diseases can now be investigated. Also Pinot Noir can be crossed with many wild grapespecies providing a large reservoir of disease-resistancegenes, which can be exploited with the aid of this genome road map.

“This description of the grape genome presents an opportunity to direct genetic improvement or disease resistance,” says Brian Dilkes. “The genome sequence simultaneously identified hundreds of genes, which correspond to enzymes that produce flavor and aroma compounds. This will allow breeding for diseases resistance to proceed without disturbing the biochemistry of taste and grape quality. When I told sommelier Andrew Meadows about this recently, his reaction was, ‘Good! I would love to offer a decent Pinot for less than $30’.”

This grape genome may also have implications beyond viticulture. Grapes can be both genetically transformed and micropropogated to produce hundreds of identical clones. With the sequencing of its relatively small genome, it is well placed to become a model organism for fruit trees in general. It is, however, in the safeguarding and improvement of grape stocks that the effects of this genome will be felt most strongly. “The sequence of the grape genome,” says Velasco, “together with the large arsenal of SNP loci, now offers a tool to open a new era in the molecular breeding of grapes.”

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001326.

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>