Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing fossil energy use on the farm

03.05.2010
The impacts of low-external-input cropping systems on energy and yield

Conventional agriculture production relies heavily on fossil fuels, particularly in its ability to provide energy at a low cost. However, the uncertain future of fossil fuel availability and prices point to need to explore energy efficiencies in other cropping systems.

Most of the U.S. Corn Belt relies on a two-year rotation of corn and soybean with heavy inputs of fertilizer, herbicides and pesticides derived from fossil fuels to achieve high yields keep costs low. Matt Liebman, Michael Cruse, and their colleagues at Iowa State University conducted a six-year study to compare energy use of a conventionally managed corn and soybean system with two low input cropping systems that use more diverse crops and manure applications, but also use less fertilizer and herbicides. The results were published in the May/June 2010 edition of Agronomy Journal, published by the American Society of Agronomy.

The two input systems consisted of a three-year rotation of corn-soybean/small grain/red clover and a four-year rotation of corn-soybean-small grain/alfalfa-alfalfa. Between 2003 and 2008, nitrogen fertilizer inputs in the 3-year rotation decreased 66% and decreased 78% in the 4-year rotation. Herbicide use decreased 80% in the three-year rotation and 85% in the four-year rotation. Despite the energy input reduction, corn and soybean yields matched or exceeded the conventional system yields.

Did the application of manure decrease the fossil fuel energy costs? Manure prices are dependent on local economic conditions, but the two low-input systems used 23% to 56% less fossil energy than conventional systems. To analyze the energy and economic costs of manure application, the researchers used two approaches. One where manure was a waste product of live stock and essentially free of cost except for the energy used in its application, and a second approach as if the costs of manure were the same as commercial fertilizers. As a low economic input, manure can return $249 per acre, or $28 to $38 under high economic input for four and three-year systems, respectively.

Most of the fossil energy input for all systems was from grain drying and handling. Conditions in northern latitudes, where farmers have limited time to allow grain to dry in the field, make it difficult to reduce this cost. The researchers point out, however, that growing corn less frequently in a rotation sequence can reduce the need for grain drying with fossil energy.

The three and four-year rotation plans rely on agriculture systems where livestock feeding, manure application are integrated into crop production practices. "Iowa has a long history of mixed crop and livestock farming, although these operations do require more management and labor," said Liebman. "If fossil energy costs rise steeply, we may see more of them again."

While fossil energy inputs may decrease with manure application and increased crop rotation, the opposite trend is true for labor inputs. A two-year rotation required 41 minutes per acre per year, with a three-year rotation increasing labor 54%, and a four-year rotation requiring 91% more labor. However, the increases in labor were mainly in parts of the year not associated with corn or soybean production activities.

The researchers conclude that low energy prices and high wages contributed to the adoption of the conventional two-year corn/soybean rotation. Fossil fuels offset labor costs and allow net economic returns to remain constant. If demand from ethanol or overseas grain markets increase, or if biofuels from corn stover become economically viable, Midwest cropping systems may continue on a trend of less diversity and more corn. However, if fossil energy prices rise without an increase in crop value, diversified cropping systems may become more preferable.

"It's hard to predict the exact details of what the future will bring us," said Liebman. "But results of this study show that we do have options for maintaining high farm productivity and profitability while substantially reducing our dependence on fossil energy."

The research team was funded by the Leopold Center for Sustainable Agriculture and the U.S. Department of Agriculture. It is expanding its activities into measurements of effects of the different cropping systems on water quality, greenhouse gas emissions, and soil carbon and nitrogen dynamics.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/files/publications/agronomy-journal/abstracts/102-3/aj09-0457-abstract.pdf.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: http://agron.scijournals.org.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.sciencesocieties.org
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>