Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red spruce reviving in New England, but why?

02.09.2013
Scientists surprised to find red spruce thriving, now looking for cause of historic growth rate

In the 1970s, red spruce was the forest equivalent of a canary in the coal mine, signaling that acid rain was damaging forests and that some species, especially red spruce, were particularly sensitive to this human induced damage.

In the course of studying the lingering effects of acid rain and whether trees stored less carbon as a result of winter injury, U.S. Forest Service and University of Vermont scientists came up with a surprising result – three decades later, the canary is feeling much better.

Decline in red spruce has been attributed to damage that trees sustain in winter, when foliage predisposed to injury by exposure to acid rain experiences freezing injury and dies. Paul Schaberg, a research plant physiologist with the U.S. Forest Service’s Northern Research Station in Burlington, Vt., and partners studied red spruce trees in Vermont, New Hampshire and Massachusetts. They found that the influence of a single damaging winter injury event in 2003 continued to slow tree growth in New England for 3 years, longer than had been expected, and had a significant impact on carbon storage.

They also found something they did not expect.

“The shocking thing is that these trees are doing remarkably well now,” said Schaberg, a co-author on the study. Researchers found that diameter growth is now the highest ever recorded for red spruce, indicating that it is now growing at levels almost two times the average for the last 100 years, a growth rate never before achieved by the trees examined. “It raises the question ‘why?’” Schaberg said.

The theories that Schaberg and his colleagues are eager to test include whether the red spruce turn-around can be credited to reductions in pollution made possible by the Clean Air Act of 1990, which helped reduce sulfur and nitrogen pollution. Another possibility is that red spruce may be one of nature’s winners in the face of climate change. For red spruce, warmer winters mean less damage to foliage, which limits growth. Questions for future research also include whether the historic growth rate will continue or whether it will plateau.

The rebound in red spruce growth is described in a study co-authored by Schaberg with Alexandra Kosiba, Gary Hawley and Christopher Hansen, all from the University of Vermont. The study, “Quantifying the legacy of foliar winter injury on woody aboveground carbon sequestration of red spruce trees,” was published earlier this year in the journal Forest Ecology and Management and is available online at: http://www.nrs.fs.fed.us/pubs/43459

“Forest Service science was at the forefront in identifying acid rain and its impacts, and it is enormously gratifying to be at the forefront of discovering this amazing turn-around in red spruce growth in New England,” said Michael T. Rains, Director of the Northern Research Station and the Forest Product Laboratory. “Whether this is a success story for pollution control or a developing story about the effects of a changing climate, we are not yet sure."

In addition to finding the surprising rebound in red spruce growth, Schaberg and his colleagues also answered the question they set out to answer – how did the foliar damage associated with the 2003 winter injury affect carbon storage? They found that the winter injury event reduced the growth of red spruce trees for at least 3 years and resulted in cumulative reductions across the landscape equivalent to the carbon produced by burning 280 million gallons of gasoline.

Historically, red spruce has been an important timber species in the United States. While it remains a major commercial species in Canada, in the United States acid rain and land use changes have resulted in the loss of many red spruce trees.

The mission of the U.S. Forest Service is to sustain the health, diversity, and productivity of the nation’s forests and grasslands to meet the needs of present and future generations. The agency has either a direct or indirect role in stewardship of about 80 percent of our nation’s forests, amounting to 850 million acres including 100 million acres of urban forests gracing the nation’s cities, where 80 percent of Americans live. The mission of the Forest Service’s Northern Research Station is to improve people’s lives and help sustain the natural resources in the Northeast and Midwest through leading-edge science and effective information delivery.

Jane Hodgins | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>