Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycled Water, Salt-Tolerant Grass a Water-Saving Pair

29.06.2015

Breeders select for trait to conserve drinkable water

Plants need water. People need water. Unfortunately, there’s only so much clean water to go around — and so the effort begins to find a solution.


Photo provided by Stacy Bonos.

Differences in salinity tolerance among perennial ryegrass genotypes.

Luckily for people, some plants are able to make do without perfectly clean water, leaving more good water for drinking. One strategy is to use treated wastewater, containing salt leftover from the cleaning process, to water large areas of turf grass. These areas include athletic fields and golf courses. Golf courses alone use approximately 750 billion gallons of water annually in arid regions.

However, most plants cannot tolerate a lot of salt. As some areas of the United States run low on clean water, plant breeders are trying to breed plants that are more salt tolerant. This would conserve clean water while maintaining healthy turf.

Plant breeders can actually see the individual effect of what each parent plant passes on because the genes add intensity to the trait. These are additive effects. Breeders can more easily select for those features when they observe those differences.

“We found through a series of experiments that salt tolerance in perennial ryegrass is highly controlled by additive genetic effects rather than environmental effects,” said Stacy Bonos from Rutgers University. “This is great news for breeders because we now know salt tolerance can be more easily bred for.”

Bonos and her team measured salt tolerance using visual percent green color. This is the percentage of the plant that is green and actively growing as compared to brown, which would indicate that it is dead or dying.

“As a plant is affected by salinity it will start to turn brown,” explained Bonos. “It is an indication of their salt tolerance if they can continue to grow and have green tissue while the others turn straw colored and brown and start to die.”

Bonos and her team also conducted a series of experiments to confirm salt tolerance. One test looked at broad-sense heritability. This showed that the trait for salt tolerance has more genetic components than environmental ones.

“But there are a lot of things that make up the genetic components so we (also) use narrow-sense heritability to focus in on those components and see if they are mostly additive,” Bonos explained. “In this case they were and that’s important because as a breeder it means you can select for them.”

Two further experiments determined how successfully genetic factors pass to the plant’s offspring. For example, two plants may combine to pass on tolerance, but one of those parents may not pass on that same strong influence in a different cross. This gives breeders an estimate of which parents are better to use in crosses and confirms what type of gene effects are influencing salinity tolerance.

Bonos said the results show that when it comes to salt tolerance, additive gene effects are more important.

“All three of these experiments were really just different ways of getting to the same place and they all confirmed each other,” she said.

Bonos and her team are working to concentrate these genes for salt tolerance so turf grass can use more wastewater and less fresh water. They hope to eventually breed a marketable grass with high tolerance.

“It has the biggest implication for golf courses because there are some courses now that are required to water their grasses with wastewater instead of drinkable water,” she said. “That's where it most makes sense, especially in areas like Las Vegas where there may not be much drinkable water available to water your lawn. That's a prime example.”

Bonos works in the Department of Plant Biology & Pathology at Rutgers University. Her work was recently published in Crop Science. The research was funded by the United States Golf Association, OJ Noer Foundation, International Turf Producers Foundation, New Jersey Turfgrass Foundation, the Rutgers Center for Turfgrass Science and the New Jersey Agricultural Experiment Station.

Contact Information
Susan Fisk
Public and Science Communications Director
sfisk@sciencesocieties.org
Phone: 608-273-8091

Susan Fisk | newswise
Further information:
http://www.sciencesocieties.org

Further reports about: Agronomy Soil Soil Science clean water golf courses grass salt tolerance tolerance turf grass

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>