Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting crops from radiation-contaminated soil

05.03.2015

Almost four years after the accident at the Fukushima Daiichi Nuclear Power Plant in Japan, farmland remains contaminated with higher-than-natural levels of radiocesium in some regions of Japan, with cesium-134 and cesium-137 being the most troublesome because of the slow rate at which they decay.

In a study published in Scientific Reports, a group at the RIKEN Center for Sustainable Resource Science in Japan led by Ryoung Shin has identified a chemical compound that prevents plants from taking up cesium, thus protecting them--and us--from its harmful effects.


(Top) Compared to controls, plants grown in cesium-contaminated soil show less growth and unhealthy leaves. (Bottom) Adding CsTolen A to the soil dramatically improved the growth of plants grown in cesium-contaminated soil.

Credit: RIKEN

Although cesium has no beneficial function in plants, it is readily absorbed by plants in contaminated soil due to its water solubility and its similarity to potassium, a critical plant nutrient. After being absorbed, it continues to compete with potassium inside plant cells, disrupting physiological processes and causing major retardation in plant growth. Because of this, the research team focused their efforts on finding a way to prevent cesium uptake.

First, they used seedlings from the model plant Arabidopsis thaliana and tested 10,000 synthetic compounds to determine if any could reverse the harmful effects of cesium. The effects of each compound were quantified with a scoring scale, and after several screenings, they had found five compounds that made plants highly tolerant to cesium.

Next they looked at how these five compounds--termed CsTolen A-E--produced their effects. They found that when Arabidopsis was grown in cesium-containing liquid media with CsTolen A, more cesium remained in the liquid medium and much less was found in the plants. Importantly, the concentration of CsTolen A needed for this effect did not prevent the plants from absorbing the potassium that they need to grow. Further tests showed that rather than helping cells to expel cesium after it has been initially absorbed, CsTolen A acted to prevent cesium from entering the roots.

Quantum mechanical modeling indicated that although CsTolen A likely binds to other alkali metal ions, such as potassium and sodium, it should preferentially bind to cesium in aqueous solutions. This was confirmed by testing in which CsTolen A did not reverse sodium-induced or potassium deficiency-induced growth retardation, indicating that its effects appear to be specific to cesium.

Most importantly, when plants were germinated and grown in cesium-contaminated soil, applying CsTolen A significantly reduced the amount of cesium absorption and resulted in greater plant growth.

As Japan prepares to mark the fourth year since the events of March 2011, lead author Eri Adams notes that, "we think our findings shed some light on the possibility of using chemicals to prevent agricultural products from being contaminated." This technique is called phytostabilization, and Adams adds that, "unlike other methods such as genetic modification, use of chemicals is a powerful tool that can alter plant responses to the environment regardless of their species, which is especially true in the case of CsTolen A because it binds to cesium before it can enter the plants."

Shin's research unit is devoted to finding solutions to several environmental and agricultural problems through studying the mechanisms of nutrient uptake. Not only will the current findings help plants, but by reducing the amount of radiocesium that enters them, it should also ensure the safety of agricultural products grown in contaminated soil. As decontaminating large areas of farmland is a difficult venture at best, CsTolen A could be a game saver for regions affected by radiocesium contamination.

###

Reference: Adams E, Chaban V, Khandelia H, Shin R (2015). Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake. Scientific Reports. doi: 10.1038/srep08842

Adam Phillips | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>