Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New products from forest biorefineries

10.05.2010
VTT Technical Research Centre of Finland is the coordinator of a large EU project called AFORE, which is developing new technologies for the separation, fractionation and primary upgrading of wood-based polymers and valuable low molecular weight compounds to be used by the wood processing mills of today and the future wood biorefineries.
The pulp mills of today could gain additional value from the wood used in pulp production, if valuable wood components from forest residue and side-streams could be recovered more effectively without compromising the main process and energy balance,. New separation and recovery technologies will be important for future forest biorefineries, too.

The main aim of the AFORE project is to develop new, industrially adaptable and techno-economically viable and sustainable methods and technologies for the separation, fractionation, and primary upgrading of wood polymers and low molecular weight compounds from forest residue or process side-streams. These valuable components can then be further utilised as starting materials in chemical, material and fuel applications. The project is focusing both on utilising the side-streams of the kraft pulping process employed in paper making today and on developing new forest biorefinery technologies for the future.

Project strongly targets at demonstration of the best technologies in current processes on a pilot or mill scale. It is believed that some of the technologies to be developed in the project could be quickly introduced into current processes.

The research supports the European wood processing industry and its industrial value chain in their aim of developing new business from forest biorefineries according to the principles of sustainable development. It is expected that the results will help the European forest industry, and the pulping industry in particular, to increase profitability and overall income significantly within 10 years, while simultaneously reducing the formation of waste by helping them utilise valuable side-stream components.

The AFORE project (Added-value from polymers and chemicals by new integrated separation, fractionation and upgrading technologies) will run for four years and has a budget of EUR 10.9 million. The project will end in 2013. There are 19 participants in total: VTT as the coordinator, 17 other European participants and one participant from the USA. Corporations (8 in total), research institutions and universities will come together in a consortium to achieve the aims of the challenging project.

For more information, please contact:

VTT Technical Research Centre of Finland
Anna Suurnäkki, Senior Research Scientist
Tel. +358 20 722 7178
anna.suurnakki@vtt.fi


Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Anna Suurnäkki | VTT info
Further information:
http://www.eu-afore.fi
http://www.vtt.fi/?lang=en

Further reports about: AFORE VTT forest residue

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>