Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision breeding creates super potato

08.12.2009
The skin is light brown, the meat luscious and yellow: from the outside alone, this new potato looks like any other. But on the inside, it is different. Its cells produce pure amylopectin, a starch used in the paper, textile and food industries. The new potatoes – recently harvested and processed for the first time – were developed by Fraunhofer researchers with the aid of a new, especially rapid breeding process.

The fall of 2009 was a truly special season for the Emsland Group: For the first time in the history of the largest German potato starch manufacturer, it processed Tilling potatoes, which exclusively contain amylopectin starch.

Not only can nutritional starches for emulsifying soups and desserts be extracted from it – it can also be used for paste and smooth coating for paper and thread production. “This potato is the first product in Germany developed by Tilling that achieves market readiness,” explains Prof. Prüfer of the Fraunhofer Institute for Molecular Biology and Applied Ecology IME.

Tilling – an acronym for “Targeting Induced Local Lesions in Genomes” – is a breeding process that researchers want to use to push evolution yet another step forward. In nature, evolution proceeds slowly: Through mutation and selection, plants and animal species adapt and change. Over the course of generations, those species develop that, due to their genetic make-up, are best adapted to the prevailing environmental conditions. Others became extinct. For millennia, humans have been using this evolutionary process for their own purposes, by focusing on highly productive- – and profit yielding – species. Modern breeding processes operate the same way, though the natural mutation rate is accelerated. “With the aid of chemicals, a vast number of mutants can be rapidly obtained,” says Jost Muth of IME, who participated in the development of the new potato starch. “We are working here with natural principles. In nature, sunlight triggers changes in the genome. With chemistry, we accomplish the same thing – only faster.”

Until now, mutation breeding was an exhaustive process. “Growers had to bring out the mutated seeds to the field, and then wait until they reached the end of their vegetation period in order to determine if one of the genetic modifications achieved the desired result. In addition, the majority of generated mutations could not be determined, since the characteristic is only expressed in a homozygous state,” explains Prüfer. His team has succeeded in accelerating the implementation. In the laboratory at IME, the mutated seeds were germinated. As soon as the first leaves appear, it’s harvest time: The researchers take a leaf sample, break apart the cellular structure, isolate the genome and analyze it. This way they can find out within a few weeks if a mutation has attained the desired traits.

In a project sponsored by the “Nachwachsende Rohstoffe” agency, researchers at IME, in collaboration with the Bioplant and Emslandstärke companies, found the super potato germ. They had to examine 2,748 seedlings until just the right one was identified that exclusively produces the starch component amylopectin. From this germ, experts were able to generate the first generation of super potatoes. There are genes active in their genome responsible for the formation of amylopectin, whereas genes that trigger the formation of amylose are shut off. “Until now, potatoes always contained both starch types. Industry had to separate the amylopectin from the amylose – an energy and cost-intensive process,” explains Prüfer. “With the Tilling potatoes, which only contain amylopectin, this process stage is superfluous. In Germany alone the paper and adhesives industry require 500,000 tonnes of highly purified amylopectin each year. Then there is the textile industry too, which uses the starch to glaze threats prior to weaving. The food industry is also relevant.

This fall, 100 tonnes of the new super potato that exclusively produces amylopectin were harvested. “They can be processed as usual in the production lines,” reports Muth. “Special measures aren’t necessary, because the Tilling potatoes are totally normal breeds that contain no genetically modified material.” The example shows that conventional or modern breeding methods will lead to success if the gene responsible for the expression of a specific trait is a natural part of the plant, and is known to scientists. The gene for the production of amylose in potatoes is one such gene. "Gene technology-based processes are indispensible and it is prudent to use them, when we want to integrate genetic material into a plant genome – , for example if we develop transgenic tobacco plants producing pharmacological substances,” concludes Prüfer. "When it comes to dealing with genes, there is an easy rule: as much modification as needed, but as little as possible.”

Prof. Dr. Dirk Prüfer | Fraunhofer Gesellschaft
Further information:
http://www.fraunhofer.de/en/press/research-news/2009/12/super-potato.jsp

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>