Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant doctors get to the root of plant stress in rice

19.08.2015

Sitting in an air-conditioned office at the Texas A&M AgriLife Research and Extension Center at Beaumont, it's obvious: People work better indoors when temperatures outside climb to the 90s while the blazing sun shimmers through waves of humidity on nearby experimental rice plots.


In a rice root pruning study, researchers at the Texas A&M AgriLife Research and Extension Center in Beaumont used time-lapse photography to monitor rice plant growth and development in response to transplanting density, root pruning and 1-MCP application.

(Photo Courtesy of Dr. Abdul Razack Mohammed, Texas A&M AgriLife Research and Extension Center in Beaumont).

The rice plants, however, can't go inside. So, they stress. And for rice farmers, that means lower yield and quality.

Most growers resign themselves to the facts. It's the summer in Texas. It's hot.

But Dr. Lee Tarpley, AgriLife Research plant physiologist, is studying what specifically affects rice plants under extreme environmental conditions. Knowing that, he believes, could lead to ways of helping plants thrive in the heat and other stressful conditions.

"We tend to view these environmental stresses as necessary evils -- especially temperature stresses -- as if there is little we can do to counter the effect," he said. "We're finding that we can use specific knowledge of how the stress affects the plant to design prevention measures."

Tarpley and Dr. Abdul Razack Mohammed, AgriLife Research assistant scientist, presented their findings at the recent Rice Field Day at the Beaumont center. They've studied not only the effect of heat but cold, submergence, salinity, wind and drought on rice crops.

One of the specific impacts, they discovered, is high nighttime temperatures, a common phenomena in Texas.

"High night temperatures do two things to rice plants," Tarpley said. "The rice plant increases its production of a plant stress hormone, and an oxidative-stress response occurs, which injures the plant. Both of these ultimately lead to losses in yield and quality."

Because they were able to track the nighttime heat stress to those two factors, he added, they were able to determine potential management strategies.

"We can spray the crop with a chemical that prevents the stress hormone activity, so that the plant never senses that it is supposed to be in stress," Tarpley said. "Or we can spray the plants with a sort of vaccination, which is like a small dose of 'oxidative stress.' That triggers the plant to build its capacity to be acclimated to future stresses."

Commercial pre-harvest use of some of the stress hormone chemicals on higher-value crops is occurring, Tarpley said, and it is just a matter of time and acceptance before the vaccination-type products will be used on rice crops in the U.S.

Because of their research on the specifics of rice stress, the international company Agrofresh, based in Collegeville, Pennsylvania, asked Tarpley and Mohammed to study transplanting shock, a condition that affects farms mostly in Asian countries where rice is started in a nursery then transported to a field for planting.

"Transplanting shock can decrease growth and development," Tarpley said. "And one thing we noticed is that a lot of root pruning occurs during the transplanting process. That reduces the production of tillers, which are important since that is where the rice grains develop."

They found that root pruning reduces the net photosynthetic rate.

That was key because photosynthesis - the way plants use sunlight to make food and grow - depends on the green pigments called chlorophyll. If there's not enough chlorophyll, the plant doesn't grow well. And the connection between low chlorophyll and the presence of ethylene, a natural plant hormone, has been well documented.

Ethylene is what causes bananas, apples and avocados to ripen and get soft, and it is used commercially to ripen some produce such as tomatoes after they are picked.

The researchers decided to treat some plants with 1-methylcyclopropene, or 1-MCP, a compound that is used to keep plants and produce fresh because it blocks ethylene perception in plants.

The idea was to see if 1-MCP would make the rice plants unaware that the roots were pruned, thus slowing the effect of ethylene and maintaining a healthy level of chlorophyll, Tarpley.

"The application of 1-MCP prevented transplanting shock in rice," he said. "The treated plants had more tillers per plant, more root length and greater chlorophyll concentration and net photosynthetic rate."

He said though U.S. rice farmers directly seed their crops rather than transplant, root pruning can also occur due to rice water weevils. So his team plans to test the application of 1-MCP for its ability to mitigate damage from those insects.

Tarpley added that his research team continues to explore the physiological effects of various environmental stresses so that when pinpointed, management strategies can be developed.

Media Contact

Kathleen Phillips
ka-phillips@tamu.edu
979-845-2872

 @texasagwriter

http://today.agrilife.org 

Kathleen Phillips | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>