Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Payback time for soil carbon from pasture conversion to sugarcane production


Estimate made by Brazilian researchers in collaboration with colleagues from France and USA was published in the journal Nature Climate Change

The reduction of soil carbon stock caused by the conversion of pasture areas into sugarcane plantations – a very common change in Brazil in recent years – may be offset within two or three years of cultivation.

The calculation appears in a study conducted by researchers at the Center for Nuclear Energy in Agriculture (CENA) of the University of São Paulo (USP) in collaboration with colleagues from the Luiz de Queiroz College of Agriculture (Esalq), also at USP.

The study also included researchers from the Federal Institute of Alagoas (IFAL), the Brazilian Bioethanol Science and Technology Laboratory, the Institut de Recherche pour le Développement in France and Harvard University, Colorado State University and the Shell Technology Center Houston in the United States.

Findings from the project "Soil carbon stocks on land-use change process to sugarcane production in South-Central Brazil," carried out with funding from FAPESP, were described in an article published in the online version of the journal Nature Climate Change.

"The study indicates that the soil carbon balance of pasture areas converted for the cultivation of sugarcane designed for ethanol production is not as negative as originally estimated," said Carlos Clemente Cerri, project coordinator and researcher at CENA.

According to Cerri, soil from pasture areas has a carbon stock whose volume varies only slightly over the years. However, the process of preparing this type of soil for conversion to sugarcane plantations causes part of the carbon stock to be emitted into the atmosphere as carbon dioxide (CO2).

In contrast, depending on the type of management, the introduction of sugarcane to pasture areas could compensate for, or even add to, the initial soil carbon stock when the organic matter and plant residue penetrate the ground.

Moreover, the ethanol produced from sugarcane grown in these areas over time ultimately offsets the CO2 emissions that occur during the conversion process because biofuel contributes toward reducing the burning of fossil fuel, explained the researcher.

The researchers conducted measurements and collected 6,000 soil samples from 135 regions in south-central Brazil, which is responsible for more than 90% of Brazil's sugarcane production.

At each of the sites, soil samples were collected from areas of sugarcane cultivation and from other areas to be used as reference. These reference areas included pastures, annual cropland (soybean, sorghum and corn) and Cerrado native vegetation.

According to the researchers, the study findings could contribute toward guiding expansion policies for sugarcane production aimed at producing ethanol to ensure the biofuel's sustainability - Ethanol demand in Brazil is expected to jump from an annual total of 25 million liters to 61.6 billion liters by 2021.

The professor indicated that to reach this number, the area of sugarcane production in Brazil would need to expand from the current 9.7 million hectares to 17 million hectares.

Cerri notes that among the options for reaching the target area, the priority for expansion of production is expected to be the conversion of degraded lands, principally those used as pastures, into sugarcane plantations.

Between 2000 and 2010, three million Brazilian hectares were converted to sugarcane cultivation areas. More than 70% of this land consisted of pastures, and 25% had been used for growing grains, said the study's researchers.

Samuel Antenor | Eurek Alert!
Further information:

Further reports about: Nuclear Technology USP cultivation dioxide plantations stocks sugarcane

More articles from Agricultural and Forestry Science:

nachricht Covering the bases with cover crops
01.10.2015 | American Society of Agronomy

nachricht Innovative seeding machine to speed up kenaf planting
23.09.2015 | Universiti Putra Malaysia (UPM)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>