Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Payback time for soil carbon from pasture conversion to sugarcane production

04.07.2014

Estimate made by Brazilian researchers in collaboration with colleagues from France and USA was published in the journal Nature Climate Change

The reduction of soil carbon stock caused by the conversion of pasture areas into sugarcane plantations – a very common change in Brazil in recent years – may be offset within two or three years of cultivation.

The calculation appears in a study conducted by researchers at the Center for Nuclear Energy in Agriculture (CENA) of the University of São Paulo (USP) in collaboration with colleagues from the Luiz de Queiroz College of Agriculture (Esalq), also at USP.

The study also included researchers from the Federal Institute of Alagoas (IFAL), the Brazilian Bioethanol Science and Technology Laboratory, the Institut de Recherche pour le Développement in France and Harvard University, Colorado State University and the Shell Technology Center Houston in the United States.

Findings from the project "Soil carbon stocks on land-use change process to sugarcane production in South-Central Brazil," carried out with funding from FAPESP, were described in an article published in the online version of the journal Nature Climate Change.

"The study indicates that the soil carbon balance of pasture areas converted for the cultivation of sugarcane designed for ethanol production is not as negative as originally estimated," said Carlos Clemente Cerri, project coordinator and researcher at CENA.

According to Cerri, soil from pasture areas has a carbon stock whose volume varies only slightly over the years. However, the process of preparing this type of soil for conversion to sugarcane plantations causes part of the carbon stock to be emitted into the atmosphere as carbon dioxide (CO2).

In contrast, depending on the type of management, the introduction of sugarcane to pasture areas could compensate for, or even add to, the initial soil carbon stock when the organic matter and plant residue penetrate the ground.

Moreover, the ethanol produced from sugarcane grown in these areas over time ultimately offsets the CO2 emissions that occur during the conversion process because biofuel contributes toward reducing the burning of fossil fuel, explained the researcher.

The researchers conducted measurements and collected 6,000 soil samples from 135 regions in south-central Brazil, which is responsible for more than 90% of Brazil's sugarcane production.

At each of the sites, soil samples were collected from areas of sugarcane cultivation and from other areas to be used as reference. These reference areas included pastures, annual cropland (soybean, sorghum and corn) and Cerrado native vegetation.

According to the researchers, the study findings could contribute toward guiding expansion policies for sugarcane production aimed at producing ethanol to ensure the biofuel's sustainability - Ethanol demand in Brazil is expected to jump from an annual total of 25 million liters to 61.6 billion liters by 2021.

The professor indicated that to reach this number, the area of sugarcane production in Brazil would need to expand from the current 9.7 million hectares to 17 million hectares.

Cerri notes that among the options for reaching the target area, the priority for expansion of production is expected to be the conversion of degraded lands, principally those used as pastures, into sugarcane plantations.

Between 2000 and 2010, three million Brazilian hectares were converted to sugarcane cultivation areas. More than 70% of this land consisted of pastures, and 25% had been used for growing grains, said the study's researchers.

Samuel Antenor | Eurek Alert!
Further information:
http://www.fapesp.br/

Further reports about: Nuclear Technology USP cultivation dioxide plantations stocks sugarcane

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>