Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Payback time for soil carbon from pasture conversion to sugarcane production

04.07.2014

Estimate made by Brazilian researchers in collaboration with colleagues from France and USA was published in the journal Nature Climate Change

The reduction of soil carbon stock caused by the conversion of pasture areas into sugarcane plantations – a very common change in Brazil in recent years – may be offset within two or three years of cultivation.

The calculation appears in a study conducted by researchers at the Center for Nuclear Energy in Agriculture (CENA) of the University of São Paulo (USP) in collaboration with colleagues from the Luiz de Queiroz College of Agriculture (Esalq), also at USP.

The study also included researchers from the Federal Institute of Alagoas (IFAL), the Brazilian Bioethanol Science and Technology Laboratory, the Institut de Recherche pour le Développement in France and Harvard University, Colorado State University and the Shell Technology Center Houston in the United States.

Findings from the project "Soil carbon stocks on land-use change process to sugarcane production in South-Central Brazil," carried out with funding from FAPESP, were described in an article published in the online version of the journal Nature Climate Change.

"The study indicates that the soil carbon balance of pasture areas converted for the cultivation of sugarcane designed for ethanol production is not as negative as originally estimated," said Carlos Clemente Cerri, project coordinator and researcher at CENA.

According to Cerri, soil from pasture areas has a carbon stock whose volume varies only slightly over the years. However, the process of preparing this type of soil for conversion to sugarcane plantations causes part of the carbon stock to be emitted into the atmosphere as carbon dioxide (CO2).

In contrast, depending on the type of management, the introduction of sugarcane to pasture areas could compensate for, or even add to, the initial soil carbon stock when the organic matter and plant residue penetrate the ground.

Moreover, the ethanol produced from sugarcane grown in these areas over time ultimately offsets the CO2 emissions that occur during the conversion process because biofuel contributes toward reducing the burning of fossil fuel, explained the researcher.

The researchers conducted measurements and collected 6,000 soil samples from 135 regions in south-central Brazil, which is responsible for more than 90% of Brazil's sugarcane production.

At each of the sites, soil samples were collected from areas of sugarcane cultivation and from other areas to be used as reference. These reference areas included pastures, annual cropland (soybean, sorghum and corn) and Cerrado native vegetation.

According to the researchers, the study findings could contribute toward guiding expansion policies for sugarcane production aimed at producing ethanol to ensure the biofuel's sustainability - Ethanol demand in Brazil is expected to jump from an annual total of 25 million liters to 61.6 billion liters by 2021.

The professor indicated that to reach this number, the area of sugarcane production in Brazil would need to expand from the current 9.7 million hectares to 17 million hectares.

Cerri notes that among the options for reaching the target area, the priority for expansion of production is expected to be the conversion of degraded lands, principally those used as pastures, into sugarcane plantations.

Between 2000 and 2010, three million Brazilian hectares were converted to sugarcane cultivation areas. More than 70% of this land consisted of pastures, and 25% had been used for growing grains, said the study's researchers.

Samuel Antenor | Eurek Alert!
Further information:
http://www.fapesp.br/

Further reports about: Nuclear Technology USP cultivation dioxide plantations stocks sugarcane

More articles from Agricultural and Forestry Science:

nachricht New model is first to predict tree growth in earliest stages of tree life
27.07.2016 | University of Missouri-Columbia

nachricht Two neonicotinoid insecticides may have inadvertent contraceptive effects on male honey bees
27.07.2016 | Universität Bern

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>