Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU researchers use motion sensors to determine equine lameness

22.03.2011
The most common ailment to affect a horse is lameness. A University of Missouri equine veterinarian has developed a system to effectively assess this problem using motion detection. This system has been referred to as "Lameness Locator."

Kevin Keegan, a professor of equine surgery in the College of Veterinary Medicine at MU, has been tracking horse movement related to equine lameness for years. Because equine lameness may begin subtly and can range from a simple mild problem affecting a single limb to a more complicated one affecting multiple limbs, veterinarians and horse owners know that early detection is the key to successful outcomes. The problem, Keegan says, is that detection still relies on simple visual observation with the naked eye.

"We've been developing objective methods of lameness detection and evaluation since the early 1990s as an aid to subjective evaluations," Keegan said. "We started with treadmills and high speed cameras, and those worked pretty well, but they weren't really practical due to high cost and they cannot be used in the field. Plus, horses do not move on a treadmill like they do on regular ground. In some cases with mild lameness, or in cases with multiple limb lameness, even experts looking at the same horse may disagree on whether lameness is present or on its severity. An objective method would be helpful to take some guesswork out of the evaluation."

Working with Frank Pai, a professor in mechanical engineering at MU, and Yoshiharu Yonezawa at the Hiroshima Institute of Technology in Japan, the team developed an inertial sensor system, now in commercial use, which places small sensors on the horse's head, right front limb and croup, near the tail. The sensors monitor and record the horse's torso movement while the horse is trotting. The recorded information is compared against data bases recorded from the movement of healthy horses and other lame horses. These comparisons can help equine veterinarians improve and streamline their evaluation in a way they've never been able to do before.

"There are two reasons why the Lameness Locator is better than the naked eye," Keegan said. "It samples motion at a higher frequency beyond the capability of the human eye and it removes the bias that frequently accompanies subjective evaluation."

The product has drawn attention from outside the veterinary world; the National Science Foundation (NSF) has awarded a two-year Small Business Technology Transfer (STTR) Phase II Grant of $500,000 for further research and development of the current technology. The grant was awarded to Equinosis, a faculty start-up with license from the University of Missouri to develop and commercialize the product, after successful completion of a Phase I study which was instrumental in developing the prototype. Equinosis has subcontracted to the University of Missouri to complete some of the additional research. In this second NSF grant, the goals include expanding analysis to other gaits in horses, like the foxtrot, pace and canter, improving existing analysis sensitivity, developing a parallel device for horses that measures incoordination from neurological disease, improving sensor design, expanding analysis to type lameness based on diagnosis, developing sens! ors and expanding analysis to detect and evaluate lameness in dogs, and porting existing analysis to run efficiently on smaller computing platforms such as cell phones or iPads.

"Our biggest challenge now is to introduce this to veterinarians, train them on the proper usage and interpretation of the data, and show them that it really works," Keegan said.

More technical information can be found at www.equinosis.com.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu
http://www.eurekalert.org/multimedia/pub/30671.php?from=181364

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>