Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MU researchers use motion sensors to determine equine lameness

The most common ailment to affect a horse is lameness. A University of Missouri equine veterinarian has developed a system to effectively assess this problem using motion detection. This system has been referred to as "Lameness Locator."

Kevin Keegan, a professor of equine surgery in the College of Veterinary Medicine at MU, has been tracking horse movement related to equine lameness for years. Because equine lameness may begin subtly and can range from a simple mild problem affecting a single limb to a more complicated one affecting multiple limbs, veterinarians and horse owners know that early detection is the key to successful outcomes. The problem, Keegan says, is that detection still relies on simple visual observation with the naked eye.

"We've been developing objective methods of lameness detection and evaluation since the early 1990s as an aid to subjective evaluations," Keegan said. "We started with treadmills and high speed cameras, and those worked pretty well, but they weren't really practical due to high cost and they cannot be used in the field. Plus, horses do not move on a treadmill like they do on regular ground. In some cases with mild lameness, or in cases with multiple limb lameness, even experts looking at the same horse may disagree on whether lameness is present or on its severity. An objective method would be helpful to take some guesswork out of the evaluation."

Working with Frank Pai, a professor in mechanical engineering at MU, and Yoshiharu Yonezawa at the Hiroshima Institute of Technology in Japan, the team developed an inertial sensor system, now in commercial use, which places small sensors on the horse's head, right front limb and croup, near the tail. The sensors monitor and record the horse's torso movement while the horse is trotting. The recorded information is compared against data bases recorded from the movement of healthy horses and other lame horses. These comparisons can help equine veterinarians improve and streamline their evaluation in a way they've never been able to do before.

"There are two reasons why the Lameness Locator is better than the naked eye," Keegan said. "It samples motion at a higher frequency beyond the capability of the human eye and it removes the bias that frequently accompanies subjective evaluation."

The product has drawn attention from outside the veterinary world; the National Science Foundation (NSF) has awarded a two-year Small Business Technology Transfer (STTR) Phase II Grant of $500,000 for further research and development of the current technology. The grant was awarded to Equinosis, a faculty start-up with license from the University of Missouri to develop and commercialize the product, after successful completion of a Phase I study which was instrumental in developing the prototype. Equinosis has subcontracted to the University of Missouri to complete some of the additional research. In this second NSF grant, the goals include expanding analysis to other gaits in horses, like the foxtrot, pace and canter, improving existing analysis sensitivity, developing a parallel device for horses that measures incoordination from neurological disease, improving sensor design, expanding analysis to type lameness based on diagnosis, developing sens! ors and expanding analysis to detect and evaluate lameness in dogs, and porting existing analysis to run efficiently on smaller computing platforms such as cell phones or iPads.

"Our biggest challenge now is to introduce this to veterinarians, train them on the proper usage and interpretation of the data, and show them that it really works," Keegan said.

More technical information can be found at

Steven Adams | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>