Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MSU lands first drone

Farmers can now get a birds-eye view ­of their fields – in full HD – thanks to Michigan State University landing its first drone.

MSU researchers are using its first unmanned aerial vehicle to help farmers maximize yields by improving nitrogen and water management and reducing environmental impact such as nitrate leaching or nitrous oxide emissions.

Farmers can now get a birds-eye view of their fields – in full HD – thanks to Michigan State University landing its first drone. Courtesy of G.L. Kohuth

For this initiative, MSU’s UAV measures how crops react to stress, such as drought, nutrients deficiency or pests. The drone flies over the field documenting the field’s status ­– down to centimeters. The portrait gives farmers details on the current health of their crops.

Armed with this knowledge, farmers can quickly pinpoint problem areas and address them with a precise rifle, as opposed to, a shotgun approach, said Bruno Basso, MSU ecosystem scientist.

“When you have a cut and need disinfectant, you don’t dive into a pool of medicine; you apply it only where you need it and in the quantity that is strictly necessary,” said Bruno, who is also a professor at MSU’s Kellogg Biological Station. “Rather than covering the entire field with fertilizer, it can be applied exactly where it’s needed. We basically try to do the right thing, at right place, at the right time”

The UAV has three sensors: a high-resolution radiometer; a thermal camera, used to monitor plant temperature and hydration; and a laser scanner, which measures individual plant height in centimeters. Unlike planes, the drone can fly at low altitudes (less than 100 feet) and in most weather conditions as long it is not very windy, covers a pre-programmed pattern on autopilot and provides more accurate data in a cost-effective manner.

“The UAV is like an X-ray,” Basso said. “Before we can diagnose the problem, we need to collect as many details as possible.”

The response to light varies among plants based on their health. Through combinations of spectral reflectance bands, researchers can determine the plants’ main source of stress, such as water or nitrogen.

With X-rays in hand, Basso, part of MSU’s Global Water Initiative, can plug in the data into the System Approach for Land-Use Sustainability model. SALUS is a new generation crop tool to forecast crop, soil, water, and nutrient conditions in current and future climates. It also can evaluate crop rotations, planting dates, irrigation and fertilizer use and project crop yields and their impact on the land.

The combination of drone and SALUS allows farmers to maximize their efforts in a sustainable fashion. They can distinguish plants that need water or nitrogen, and treat their plants – rather than their entire field – immediately.

“It’s based on actual need, not on tradition, not on history or a plan recommended by someone else,” Basso said. “It’s what plants need now and is the ultimate in sustainability.”

This isn’t scientific theory, either. This is what’s happening in the farmers’ own fields, playing out in terms of profit per acre ­and preserving their environment, rather than in laboratories.

“You have to use technology to help improve people’s lives,” Basso said. “The combination of UAV and SALUS is powerful and accessible.”

Deploying the UAV to aid farmers is serving as the inaugural use of MSU’s drone. Basso is open to sharing it with others and collaborating on new research. The potential of drones has yet to be maximized, he said.

Basso’s research is funded in part by the National Science Foundation.

Layne Cameron | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>