Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU lands first drone

11.09.2013
Farmers can now get a birds-eye view ­of their fields – in full HD – thanks to Michigan State University landing its first drone.

MSU researchers are using its first unmanned aerial vehicle to help farmers maximize yields by improving nitrogen and water management and reducing environmental impact such as nitrate leaching or nitrous oxide emissions.


Farmers can now get a birds-eye view of their fields – in full HD – thanks to Michigan State University landing its first drone. Courtesy of G.L. Kohuth

For this initiative, MSU’s UAV measures how crops react to stress, such as drought, nutrients deficiency or pests. The drone flies over the field documenting the field’s status ­– down to centimeters. The portrait gives farmers details on the current health of their crops.

Armed with this knowledge, farmers can quickly pinpoint problem areas and address them with a precise rifle, as opposed to, a shotgun approach, said Bruno Basso, MSU ecosystem scientist.

“When you have a cut and need disinfectant, you don’t dive into a pool of medicine; you apply it only where you need it and in the quantity that is strictly necessary,” said Bruno, who is also a professor at MSU’s Kellogg Biological Station. “Rather than covering the entire field with fertilizer, it can be applied exactly where it’s needed. We basically try to do the right thing, at right place, at the right time”

The UAV has three sensors: a high-resolution radiometer; a thermal camera, used to monitor plant temperature and hydration; and a laser scanner, which measures individual plant height in centimeters. Unlike planes, the drone can fly at low altitudes (less than 100 feet) and in most weather conditions as long it is not very windy, covers a pre-programmed pattern on autopilot and provides more accurate data in a cost-effective manner.

“The UAV is like an X-ray,” Basso said. “Before we can diagnose the problem, we need to collect as many details as possible.”

The response to light varies among plants based on their health. Through combinations of spectral reflectance bands, researchers can determine the plants’ main source of stress, such as water or nitrogen.

With X-rays in hand, Basso, part of MSU’s Global Water Initiative, can plug in the data into the System Approach for Land-Use Sustainability model. SALUS is a new generation crop tool to forecast crop, soil, water, and nutrient conditions in current and future climates. It also can evaluate crop rotations, planting dates, irrigation and fertilizer use and project crop yields and their impact on the land.

The combination of drone and SALUS allows farmers to maximize their efforts in a sustainable fashion. They can distinguish plants that need water or nitrogen, and treat their plants – rather than their entire field – immediately.

“It’s based on actual need, not on tradition, not on history or a plan recommended by someone else,” Basso said. “It’s what plants need now and is the ultimate in sustainability.”

This isn’t scientific theory, either. This is what’s happening in the farmers’ own fields, playing out in terms of profit per acre ­and preserving their environment, rather than in laboratories.

“You have to use technology to help improve people’s lives,” Basso said. “The combination of UAV and SALUS is powerful and accessible.”

Deploying the UAV to aid farmers is serving as the inaugural use of MSU’s drone. Basso is open to sharing it with others and collaborating on new research. The potential of drones has yet to be maximized, he said.

Basso’s research is funded in part by the National Science Foundation.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>