Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixed forest provides beneficial effects

30.01.2013
Forestry and nature conservation can benefit from promoting more different varieties of trees, according to a new study in which researchers from the University of Gothenburg, Sweden, were involved.
Modern forestry is based largely on monocultures – usually pine or spruce trees in Sweden – mainly because this is seen to be more rational. However, a forest also contributes ecosystem services other than just wood production, such as biological diversity, carbon sequestration and berries.

A new study by the Swedish University of Agricultural Sciences (SLU) and Future Forests shows that – in comparison to monocultures – mixed forest provides beneficial effects for a number of different services, including tree growth. Thestudy was led by Lars Gamfeldt from the University of Gothenburg.

“It has often been suggested that a high diversity of tree species has a positive impact on ecosystem processes,” says Lars. “But until now, this relationship has mainly only been analysed for one process or ecosystem service at a time.”

The study, which was carried out by an international team of researchers, is based on data from the Swedish National Forest Inventory and the Swedish Forest Soil Inventory. By examining the importance of the presence of various tree species in relation to six different ecosystem services (tree growth, carbon sequestration, berry production, food for wildlife, the presence of dead wood and biological diversity in ground vegetation), the study was able to show that all six of these services had a positive relationship to the number of tree species.

For example, the biomass of spruce is linked to high tree growth and the biomass of pine to berry production, while higher levels of carbon sequestration occur in areas with a larger amount of birch. In order to increase all these services, forestry may therefore need to make use of more varieties of trees. Other studies of forests in central Europe, the Mediterranean region and Canada back up these results.

The study also investigated the relationship between the individual ecosystem services. For example, high levels of tree growth appear to have a negative correlation with the production of both berries and food for wildlife, and with the presence of dead wood. On the other hand, there was a positive correlation between food for wildlife and both berry production and biological diversity in the ground vegetation.

“It’s not just a simple case of always getting more of everything,” explains Umeå University’s Jon Moen, “Sometimes you have to strike a balance between different ecosystem services.”

The new study has been published in the scientific journal Nature Communications, and goes against accepted thinking within Swedish forestry to some extent. “Our findings show that both forestry and nature conservation could benefit from promoting more different varieties of trees, thereby providing a greater diversity of ecosystem services,” concludes Jan Bengtsson from SLU.

Future Forests is a collaboration between SLU, Umeå University and the Forestry Research Institute of Sweden (Skogforsk), and is financed by the Swedish Foundation for Strategic Environmental Research (Mistra), SLU, Umeå University, Skogforsk and the Swedish forest industry.

Contacts:
Lars Gamfeldt, The University of Gothenburg, +46 (0)70 3393921, lars.gamfeldt@gu.se

Jan Bengtsson, The Swedish University of Agricultural Sciences, +46 (0)70 2335118, jan.bengtsson@slu.se

Jon Moen, Umeå University, +46 (0)70 2271513, jon.moen@emg.umu.se

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>