Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missouri Grapes Hold Key to Improving World Grape Production

07.12.2010
University of Missouri researchers study traits that make Norton grapes resistant to debilitating mildew

In a few years, a sip of Cabernet Sauvignon, Merlot or Pinot Noir may include a taste of the “Show-Me” State. The state grape of Missouri – the Norton variety grown at many vineyards around the state – is resistant to powdery mildew, a fungal pathogen that affects winemaking grapes around the world.

Now, researchers at the University of Missouri are working to identify valuable genes from the Norton grape for eventual transfer into other grapes to make them less susceptible to mildew, decrease fungicide use and increase world-wide grape production.

Walter Gassmann, a researcher in the Bond Life Sciences Center and associate professor of plant sciences in the College of Agriculture, Food and Natural Resources.

“The hot, humid environment of Missouri is perfect for the growth of fungal pathogens, such as mildew, yet Norton resists the fungus,” said Walter Gassmann, a researcher in the Bond Life Sciences Center and associate professor of plant sciences in the College of Agriculture, Food and Natural Resources. “Understanding what makes Norton resistant to fungus, and European varieties, such as Cabernet Sauvignon, susceptible to fungus, can help us improve grape production around the world.”

Researchers say the difference between the Norton grape and other varieties is that the Norton grape builds more of a certain protein that is essential to fight fungal pathogens than other grape varieties, which build too little of the protein too late to successfully battle the fungus. Earlier research has discovered the gene that contains the blueprint for this protein present in both Norton grapes and other varieties that cannot resist the mildew. Gassmann is conducting research on the fast-growing Arabidopsis plant, which features a gene similar to the targeted grape gene. His team added the grapevine gene to an Arabidopsis plant that was lacking its own gene. Adding the grapevine gene led to plants that resisted the mildew, confirming that the grapevine gene is responsible for orchestrating plant defenses against mildew. The next step in this research is to figure out what in the genetic instructions is different in Norton and other grapevine varieties that leads to the observed difference in protein levels in resistant Norton and susceptible grapevines.

Most wineries must use sulfur to combat the fungus, and Gassmann says that it will be years until fungus-resistant grape varieties can be put into commercial production. He says that research is being conducted, including sequencing the Norton genome, but it will still be technically difficult to make a transgenic grape plant and even more difficult to find consumers accepting of the idea of consuming genetically modified grapes, although he hopes that these attitudes will eventually change.

“Until then, there really is no way to eliminate fungicide use, for economic reasons or to make organic wine, unless you breed the mildew resistant trait into other varieties,” Gassmann said. “Many people forget that before Prohibition Missouri was the second largest wine-producing state in the country after New York. We see this work as eventually providing an economic impact through the high-value agriculture and tourism that wineries can provide.”

Gassmann worked on the research with Wenping Qiu, professor and director of the Center for Grapevine Biotechnology at Missouri State University. Gassmann and Qiu’s study was recently published in the plant sciences journal Planta. The research was funded by the U.S. Department of Agriculture.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>