Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missouri Grapes Hold Key to Improving World Grape Production

07.12.2010
University of Missouri researchers study traits that make Norton grapes resistant to debilitating mildew

In a few years, a sip of Cabernet Sauvignon, Merlot or Pinot Noir may include a taste of the “Show-Me” State. The state grape of Missouri – the Norton variety grown at many vineyards around the state – is resistant to powdery mildew, a fungal pathogen that affects winemaking grapes around the world.

Now, researchers at the University of Missouri are working to identify valuable genes from the Norton grape for eventual transfer into other grapes to make them less susceptible to mildew, decrease fungicide use and increase world-wide grape production.

Walter Gassmann, a researcher in the Bond Life Sciences Center and associate professor of plant sciences in the College of Agriculture, Food and Natural Resources.

“The hot, humid environment of Missouri is perfect for the growth of fungal pathogens, such as mildew, yet Norton resists the fungus,” said Walter Gassmann, a researcher in the Bond Life Sciences Center and associate professor of plant sciences in the College of Agriculture, Food and Natural Resources. “Understanding what makes Norton resistant to fungus, and European varieties, such as Cabernet Sauvignon, susceptible to fungus, can help us improve grape production around the world.”

Researchers say the difference between the Norton grape and other varieties is that the Norton grape builds more of a certain protein that is essential to fight fungal pathogens than other grape varieties, which build too little of the protein too late to successfully battle the fungus. Earlier research has discovered the gene that contains the blueprint for this protein present in both Norton grapes and other varieties that cannot resist the mildew. Gassmann is conducting research on the fast-growing Arabidopsis plant, which features a gene similar to the targeted grape gene. His team added the grapevine gene to an Arabidopsis plant that was lacking its own gene. Adding the grapevine gene led to plants that resisted the mildew, confirming that the grapevine gene is responsible for orchestrating plant defenses against mildew. The next step in this research is to figure out what in the genetic instructions is different in Norton and other grapevine varieties that leads to the observed difference in protein levels in resistant Norton and susceptible grapevines.

Most wineries must use sulfur to combat the fungus, and Gassmann says that it will be years until fungus-resistant grape varieties can be put into commercial production. He says that research is being conducted, including sequencing the Norton genome, but it will still be technically difficult to make a transgenic grape plant and even more difficult to find consumers accepting of the idea of consuming genetically modified grapes, although he hopes that these attitudes will eventually change.

“Until then, there really is no way to eliminate fungicide use, for economic reasons or to make organic wine, unless you breed the mildew resistant trait into other varieties,” Gassmann said. “Many people forget that before Prohibition Missouri was the second largest wine-producing state in the country after New York. We see this work as eventually providing an economic impact through the high-value agriculture and tourism that wineries can provide.”

Gassmann worked on the research with Wenping Qiu, professor and director of the Center for Grapevine Biotechnology at Missouri State University. Gassmann and Qiu’s study was recently published in the plant sciences journal Planta. The research was funded by the U.S. Department of Agriculture.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

25.09.2017 | Health and Medicine

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>