Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minnesota Partnership targets aphids

04.02.2009
From medical research to crop protection

Medical scientists in Minnesota are focusing their expertise on a pest that destroys soybeans. The goal of the Minnesota Partnership team is to develop an insecticide that is safe for humans but will kill the soybean aphid, a bug that's been ravaging Minnesota crops. Their findings appear in the journal Public Library of Science -- PLoS One.

"We've shown in the laboratory that we're 99 percent effective in inhibiting a key enzyme in two aphids, one that damages soybeans," says Stephen Brimijoin, Ph.D., a Mayo Clinic researcher on the team. "This means we should be able to stop the insect without harming other animals or humans because the target we're hitting is selective to the aphid."

Dr. Brimijoin collected soybean aphids from demonstration plots at the University of Minnesota Extension facility in Rochester and isolated the key enzyme in the aphids, while Yuan-Ping Pang, Ph.D., Mayo Clinic co-investigator, characterized the molecular structures of the target area.

"We're reporting the development of a small molecule that blocks nearly all acetylcholinesterase (AChE) activity in the greenbug and the soybean aphid, but without inhibiting AChE in humans," says Dr. Pang. "Now we need to see how well that translates to the field." Overseeing that phase will be David Ragsdale, Ph.D., an entomologist at the University of Minnesota and another co-investigator. The researchers estimate that phase of the project will begin in a few weeks.

"Our organization is excited about this project and closely awaiting the outcome," says Gene Stoel, research chair, Minnesota Soybean Research and Promotion Council. "This is a great example of how Minnesota's medical and agriculture sectors can work together for everyone."

Currently, no insecticide can counter the soybean aphid, according to Dr. Brimijoin. Various aphid species adapt to organophosphate insecticides and those chemicals can often prove toxic to birds and humans. Instead of targeting serine, as has been the case for decades, the small molecule developed by Dr. Pang focuses on a novel cystine target called Cys289, to which aphids and other insects cannot develop a resistance. Only 6 micromoles in size, the molecule caused "irreversible inhibition" in the greenbug. It had the same impact on the soybean aphid, though that data was too recent to include in the article.

The Minnesota Partnership for Biotechnology and Medical Genomics has been funding research aimed at disease for five years. The soybean aphid research shows the broader benefits of modern genomic and molecular science in Minnesota's top medical research institutions. It also demonstrates an expansion from treating or curing patients to preventing diseases through proactively improving environmental health.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>