Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minnesota Partnership targets aphids

04.02.2009
From medical research to crop protection

Medical scientists in Minnesota are focusing their expertise on a pest that destroys soybeans. The goal of the Minnesota Partnership team is to develop an insecticide that is safe for humans but will kill the soybean aphid, a bug that's been ravaging Minnesota crops. Their findings appear in the journal Public Library of Science -- PLoS One.

"We've shown in the laboratory that we're 99 percent effective in inhibiting a key enzyme in two aphids, one that damages soybeans," says Stephen Brimijoin, Ph.D., a Mayo Clinic researcher on the team. "This means we should be able to stop the insect without harming other animals or humans because the target we're hitting is selective to the aphid."

Dr. Brimijoin collected soybean aphids from demonstration plots at the University of Minnesota Extension facility in Rochester and isolated the key enzyme in the aphids, while Yuan-Ping Pang, Ph.D., Mayo Clinic co-investigator, characterized the molecular structures of the target area.

"We're reporting the development of a small molecule that blocks nearly all acetylcholinesterase (AChE) activity in the greenbug and the soybean aphid, but without inhibiting AChE in humans," says Dr. Pang. "Now we need to see how well that translates to the field." Overseeing that phase will be David Ragsdale, Ph.D., an entomologist at the University of Minnesota and another co-investigator. The researchers estimate that phase of the project will begin in a few weeks.

"Our organization is excited about this project and closely awaiting the outcome," says Gene Stoel, research chair, Minnesota Soybean Research and Promotion Council. "This is a great example of how Minnesota's medical and agriculture sectors can work together for everyone."

Currently, no insecticide can counter the soybean aphid, according to Dr. Brimijoin. Various aphid species adapt to organophosphate insecticides and those chemicals can often prove toxic to birds and humans. Instead of targeting serine, as has been the case for decades, the small molecule developed by Dr. Pang focuses on a novel cystine target called Cys289, to which aphids and other insects cannot develop a resistance. Only 6 micromoles in size, the molecule caused "irreversible inhibition" in the greenbug. It had the same impact on the soybean aphid, though that data was too recent to include in the article.

The Minnesota Partnership for Biotechnology and Medical Genomics has been funding research aimed at disease for five years. The soybean aphid research shows the broader benefits of modern genomic and molecular science in Minnesota's top medical research institutions. It also demonstrates an expansion from treating or curing patients to preventing diseases through proactively improving environmental health.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>