Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minnesota Partnership targets aphids

04.02.2009
From medical research to crop protection

Medical scientists in Minnesota are focusing their expertise on a pest that destroys soybeans. The goal of the Minnesota Partnership team is to develop an insecticide that is safe for humans but will kill the soybean aphid, a bug that's been ravaging Minnesota crops. Their findings appear in the journal Public Library of Science -- PLoS One.

"We've shown in the laboratory that we're 99 percent effective in inhibiting a key enzyme in two aphids, one that damages soybeans," says Stephen Brimijoin, Ph.D., a Mayo Clinic researcher on the team. "This means we should be able to stop the insect without harming other animals or humans because the target we're hitting is selective to the aphid."

Dr. Brimijoin collected soybean aphids from demonstration plots at the University of Minnesota Extension facility in Rochester and isolated the key enzyme in the aphids, while Yuan-Ping Pang, Ph.D., Mayo Clinic co-investigator, characterized the molecular structures of the target area.

"We're reporting the development of a small molecule that blocks nearly all acetylcholinesterase (AChE) activity in the greenbug and the soybean aphid, but without inhibiting AChE in humans," says Dr. Pang. "Now we need to see how well that translates to the field." Overseeing that phase will be David Ragsdale, Ph.D., an entomologist at the University of Minnesota and another co-investigator. The researchers estimate that phase of the project will begin in a few weeks.

"Our organization is excited about this project and closely awaiting the outcome," says Gene Stoel, research chair, Minnesota Soybean Research and Promotion Council. "This is a great example of how Minnesota's medical and agriculture sectors can work together for everyone."

Currently, no insecticide can counter the soybean aphid, according to Dr. Brimijoin. Various aphid species adapt to organophosphate insecticides and those chemicals can often prove toxic to birds and humans. Instead of targeting serine, as has been the case for decades, the small molecule developed by Dr. Pang focuses on a novel cystine target called Cys289, to which aphids and other insects cannot develop a resistance. Only 6 micromoles in size, the molecule caused "irreversible inhibition" in the greenbug. It had the same impact on the soybean aphid, though that data was too recent to include in the article.

The Minnesota Partnership for Biotechnology and Medical Genomics has been funding research aimed at disease for five years. The soybean aphid research shows the broader benefits of modern genomic and molecular science in Minnesota's top medical research institutions. It also demonstrates an expansion from treating or curing patients to preventing diseases through proactively improving environmental health.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>