Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midge-hunting scientists tackle spread of devastating bluetongue virus

08.08.2008
Scientists at the BBSRC-funded Institute for Animal Health (IAH) are stepping up the battle against the devastating and economically damaging bluetongue virus.

By combining ingenious ways to trap and monitor midges with cutting edge computer modelling and weather predictions the IAH team are gaining an understanding of how the insects spread the disease so that they can improve surveillance methods and advise farmers how and when to protect their animals.

The scientists are collecting data on midge numbers and biting behaviour from midge-hunting expeditions in southern England. They incorporate this with meteorological data from Met Office colleagues to develop complex mathematical models that can be used to establish under what weather conditions the midges are mostly likely to be flying around and when they are most likely to be giving disease-spreading bites to farm animals.

This will allow the team, led by Dr Simon Carpenter, to advise farmers when it is safest to move susceptible animals and also examine how stabling of animals can be used where logistically possible to reduce the chance of infectious midge bites. They will also use this data to establish best practice for use of insecticides and timing of vaccination of animals against this economically important and difficult to control disease.

Lead researcher Dr Simon Carpenter said: "These experiments are vital - it's about knowing your enemy. Last year, in northern Europe, bluetongue cost over £95 million in direct losses alone. And while indirect losses in the UK last year were considerable, we have yet to experience the full effects of a BTV outbreak as has been seen on the continent. A major 2008 outbreak could bring huge hardship both to directly affected farmers and, if vaccination coverage is poor, to those living in neighbouring movement restriction zones.

Hence it is vital that, firstly, as many farmers vaccinate their stock as possible and secondly, we collect basic data to understand how these outbreaks occur and what can be done to slow their progress. We have to think to ourselves: "when are the midges going to be active and what can we do to put a barrier between our livestock and these midges?" We will use our models to advise on best practice for measures such as stabling, insecticide use and vaccination, to control the spread of bluetongue virus."

The team has developed two methods to monitor the flying and biting behaviour of the Culicoides midge that spreads the disease, under particular weather conditions. The first uses a large net of known volume mounted on top of a 4x4 truck, which is driven through grazing land. By driving at a constant speed of 20mph over a known distance the scientists can precisely calculate the volume of air passing through the net and therefore calculate the number of Culicoides midges per cubic metre of air. All of the insects caught in the net are taken back to the lab to sort out the Culicoides midges from other insects, including different midge species.

The second method focuses on the biting rate of the midges and uses a large muslin tent, the walls of which are lowered around a penned grazing sheep after an exposure period of ten minutes. The scientists then enter the tented area and collect any midges that have landed on the walls and ceiling of the tent as well as examining the sheep for any further biting individuals. These midges can then be analysed in the lab to establish which species is carrying out the biting.

Dr Carpenter continued: "The benefit of these techniques is that, until very recently, midge surveillance relied upon the use of light traps that sometimes do not represent what is happing on animals particularly well. Using these two techniques we can more easily understand the relationship between weather conditions and both background midge activity and biting attacks, and also predict the level of risk at different times of the year. These models can then be used along with weather forecasting to advise farmers as to when Culicoides populations are most active and to develop best practice for controlling the spread of the midges and the virus itself.

"All of this work contributes to the aims for better knowledge about Culicoides that were set out in the European Food Safety Authority's 'Scientific Opinion on Bluetongue' published a couple of weeks ago."

Kevin Pearce, National Farmers Union, said: "Bluetongue is a terrible disease of ruminant livestock. Our farmers have worked hard to contain this virus in the infected areas of the south east and East Anglia through vaccination and vigilance but we know that we couldn't have achieved this without the effort and knowledge of the scientists at IAH. Bluetongue shares its transmission vector - the midge - with other exotic, but equally serious, diseases such as African Horse Sickness so any knowledge and understanding of the midges' behaviour and breeding patterns are welcome. We wish the experts at IAH success in their endeavours with this project."

| alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>