Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midge-hunting scientists tackle spread of devastating bluetongue virus

08.08.2008
Scientists at the BBSRC-funded Institute for Animal Health (IAH) are stepping up the battle against the devastating and economically damaging bluetongue virus.

By combining ingenious ways to trap and monitor midges with cutting edge computer modelling and weather predictions the IAH team are gaining an understanding of how the insects spread the disease so that they can improve surveillance methods and advise farmers how and when to protect their animals.

The scientists are collecting data on midge numbers and biting behaviour from midge-hunting expeditions in southern England. They incorporate this with meteorological data from Met Office colleagues to develop complex mathematical models that can be used to establish under what weather conditions the midges are mostly likely to be flying around and when they are most likely to be giving disease-spreading bites to farm animals.

This will allow the team, led by Dr Simon Carpenter, to advise farmers when it is safest to move susceptible animals and also examine how stabling of animals can be used where logistically possible to reduce the chance of infectious midge bites. They will also use this data to establish best practice for use of insecticides and timing of vaccination of animals against this economically important and difficult to control disease.

Lead researcher Dr Simon Carpenter said: "These experiments are vital - it's about knowing your enemy. Last year, in northern Europe, bluetongue cost over £95 million in direct losses alone. And while indirect losses in the UK last year were considerable, we have yet to experience the full effects of a BTV outbreak as has been seen on the continent. A major 2008 outbreak could bring huge hardship both to directly affected farmers and, if vaccination coverage is poor, to those living in neighbouring movement restriction zones.

Hence it is vital that, firstly, as many farmers vaccinate their stock as possible and secondly, we collect basic data to understand how these outbreaks occur and what can be done to slow their progress. We have to think to ourselves: "when are the midges going to be active and what can we do to put a barrier between our livestock and these midges?" We will use our models to advise on best practice for measures such as stabling, insecticide use and vaccination, to control the spread of bluetongue virus."

The team has developed two methods to monitor the flying and biting behaviour of the Culicoides midge that spreads the disease, under particular weather conditions. The first uses a large net of known volume mounted on top of a 4x4 truck, which is driven through grazing land. By driving at a constant speed of 20mph over a known distance the scientists can precisely calculate the volume of air passing through the net and therefore calculate the number of Culicoides midges per cubic metre of air. All of the insects caught in the net are taken back to the lab to sort out the Culicoides midges from other insects, including different midge species.

The second method focuses on the biting rate of the midges and uses a large muslin tent, the walls of which are lowered around a penned grazing sheep after an exposure period of ten minutes. The scientists then enter the tented area and collect any midges that have landed on the walls and ceiling of the tent as well as examining the sheep for any further biting individuals. These midges can then be analysed in the lab to establish which species is carrying out the biting.

Dr Carpenter continued: "The benefit of these techniques is that, until very recently, midge surveillance relied upon the use of light traps that sometimes do not represent what is happing on animals particularly well. Using these two techniques we can more easily understand the relationship between weather conditions and both background midge activity and biting attacks, and also predict the level of risk at different times of the year. These models can then be used along with weather forecasting to advise farmers as to when Culicoides populations are most active and to develop best practice for controlling the spread of the midges and the virus itself.

"All of this work contributes to the aims for better knowledge about Culicoides that were set out in the European Food Safety Authority's 'Scientific Opinion on Bluetongue' published a couple of weeks ago."

Kevin Pearce, National Farmers Union, said: "Bluetongue is a terrible disease of ruminant livestock. Our farmers have worked hard to contain this virus in the infected areas of the south east and East Anglia through vaccination and vigilance but we know that we couldn't have achieved this without the effort and knowledge of the scientists at IAH. Bluetongue shares its transmission vector - the midge - with other exotic, but equally serious, diseases such as African Horse Sickness so any knowledge and understanding of the midges' behaviour and breeding patterns are welcome. We wish the experts at IAH success in their endeavours with this project."

| alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>