Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Through Microbes, Nitrogen Alters Soil Carbon Cycle

19.07.2010
Soil scientists studying bacterial communities in hardwood forests have found evidence that extra human-derived nitrogen deposited from the atmosphere can change the composition of the soil microbial community, with implications for carbon cycling and sequestration.

Don Zak and Sarah Eisenlord from the University of Michigan conducted a study on the response the soil bacterial community to levels of nitrogen accumulation expected by mid-century. They used molecular techniques to quantify the abundance of actinobacteria, a microbe involved in plant litter decomposition, and compared the differences in bacteria species found in experimental versus normal conditions. The results are reported in the July-August 2010 edition of the Soil Science Society of America Journal, published by the Soil Science Society of America.

Contrary to the author’s expectations, simulated atmospheric nitrogen deposition did not affect the abundance of actinobacteria in the forest floor, but did decrease total extractable DNA and gene abundance in the surface soil. This indicates that nitrogen deposition from human activities has a negative effect on soil microbial communities.

Moreover, this study identified significant and consistent changes in the type and abundance of microbes across the study’s four sites. Experimental sites contained unique groups of bacteria compared to communities under a normal nitrogen environment.

Specifically, there were decreases in a family whose members are known to degrade lignin, a plant component, and increases in a poorly understood sub-order. Another unexpected result was that a species commonly thought to be a dominant soil bacteria made up less than 4% of the experimental communities.

These changes in community compositions coincided with the slowing of litter decay and the enhanced production of dissolved organic carbon, a by-product of plant matter decomposition.

“Our observations are consistent with the idea that compositional shifts in soil microbial communities can elicit functional responses that influence the rates of soil carbon cycling,” says Sarah Eisenlord, regardless of the current limited understanding of actinobacterial ecology and physiology.

Understanding the mechanisms which alter the decay of leaf litter debris is crucial in understanding the dynamics of soil carbon storage in a changing climate. Fungi and Actinobacteria are the primary mediators in plant litter decay in the forest floor.

According to Eisenlord, the analysis of these communities has given rise to more questions about the diversity, identity, and function of microbes in forest soil ecosystems. This study uncovered a surprising diversity and distribution of un-cultured and un-characterized species, and is a call to further understand how these organisms interact with their environment to complement the advances in molecular techniques in the field.

The study sites have continuously received experimental nitrogen deposition beginning in 1994. With support from the National Science Foundation, Don Zak from the University of Michigan, Kurt Pregitzer from the University of Idaho and Andy Burton from Michigan Technological University have examined the effects of simulated atmospheric nitrogen deposition on forest carbon dynamics in northern hardwood forests dominated by sugar maple, a dominant forest type in eastern North America.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.soils.org/publications/sssaj/abstracts/74/4/1157.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office.

Sara Uttech | Newswise Science News
Further information:
http://www.sciencesocieties.org
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

Researchers identify cause of hereditary skeletal muscle disorder

22.02.2017 | Health and Medicine

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>