Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Through Microbes, Nitrogen Alters Soil Carbon Cycle

19.07.2010
Soil scientists studying bacterial communities in hardwood forests have found evidence that extra human-derived nitrogen deposited from the atmosphere can change the composition of the soil microbial community, with implications for carbon cycling and sequestration.

Don Zak and Sarah Eisenlord from the University of Michigan conducted a study on the response the soil bacterial community to levels of nitrogen accumulation expected by mid-century. They used molecular techniques to quantify the abundance of actinobacteria, a microbe involved in plant litter decomposition, and compared the differences in bacteria species found in experimental versus normal conditions. The results are reported in the July-August 2010 edition of the Soil Science Society of America Journal, published by the Soil Science Society of America.

Contrary to the author’s expectations, simulated atmospheric nitrogen deposition did not affect the abundance of actinobacteria in the forest floor, but did decrease total extractable DNA and gene abundance in the surface soil. This indicates that nitrogen deposition from human activities has a negative effect on soil microbial communities.

Moreover, this study identified significant and consistent changes in the type and abundance of microbes across the study’s four sites. Experimental sites contained unique groups of bacteria compared to communities under a normal nitrogen environment.

Specifically, there were decreases in a family whose members are known to degrade lignin, a plant component, and increases in a poorly understood sub-order. Another unexpected result was that a species commonly thought to be a dominant soil bacteria made up less than 4% of the experimental communities.

These changes in community compositions coincided with the slowing of litter decay and the enhanced production of dissolved organic carbon, a by-product of plant matter decomposition.

“Our observations are consistent with the idea that compositional shifts in soil microbial communities can elicit functional responses that influence the rates of soil carbon cycling,” says Sarah Eisenlord, regardless of the current limited understanding of actinobacterial ecology and physiology.

Understanding the mechanisms which alter the decay of leaf litter debris is crucial in understanding the dynamics of soil carbon storage in a changing climate. Fungi and Actinobacteria are the primary mediators in plant litter decay in the forest floor.

According to Eisenlord, the analysis of these communities has given rise to more questions about the diversity, identity, and function of microbes in forest soil ecosystems. This study uncovered a surprising diversity and distribution of un-cultured and un-characterized species, and is a call to further understand how these organisms interact with their environment to complement the advances in molecular techniques in the field.

The study sites have continuously received experimental nitrogen deposition beginning in 1994. With support from the National Science Foundation, Don Zak from the University of Michigan, Kurt Pregitzer from the University of Idaho and Andy Burton from Michigan Technological University have examined the effects of simulated atmospheric nitrogen deposition on forest carbon dynamics in northern hardwood forests dominated by sugar maple, a dominant forest type in eastern North America.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.soils.org/publications/sssaj/abstracts/74/4/1157.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office.

Sara Uttech | Newswise Science News
Further information:
http://www.sciencesocieties.org
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>