Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microalgae could be Texas' next big cash crop

07.07.2011
Just as corn and peanuts stunned the world decades ago with their then-newly discovered multi-beneficial uses and applications, Texas AgriLife Research scientists in Corpus Christi think microalgae holds even more promise.

"It's a huge, untapped source of fuel, food, feed, pharmaceuticals and even pollution-busters," said Dr. Carlos Fernandez, a crop physiologist at the Texas AgriLife Research and Extension Center at Corpus Christi who is studying the physiological responses of microalgae to the environment.

There are an estimated 200,000 to 800,000 species of microalgae, microscopic algae that thrive in freshwater and marine systems, Fernandez said.

Of all those species, only 35,000 species have been described, he said.

"We're only starting to scratch the surface of discovering the natural secrets of microalgae and their many potential uses and benefits," he said. "But already it's obvious that farmers will one day soon be growing microalgae on marginal land that won't compete with fertile farmland. They won't even compete for fresh water to grow."

To understand how best to grow it, Fernandez constructed a microalgae physiology laboratory to study how it's affected by temperature, salinity, nutrients, light levels and carbon dioxide.

"We have four bioreactors in which we grow microalgae to determine the basic physiological responses that affect its growth," he said. "We will then integrate these responses into a simulator model, a tool we can use in the management of larger, outdoor systems."

In this study, different strains of microalgae will be evaluated for their capacity to produce large amounts of lipids, or fats, that can then be converted to produce and refine diesel and other biofuels, Fernandez said.

"Along with that, after extracting the lipids from the biomass of microalgae, there is a residue that we are going to analyze for its quality for use as feed for animals, including fish, shrimp or cattle."

Eventually, studies will evaluate the possibility of using the residue as a soil fertilizer.

"There are lots of other potential uses for the residue, but for now our focus is on feed and fertilizer," he said.

The microalgae study includes other researchers, Fernandez said.

"We've just started this work and we're working closely with the nearby Texas AgriLife Mariculture labs in Flour Bluff, under the direction of Dr. Tzachi Samocha, and the one in Port Aransas, under the direction of Dr. Addison Lawrence."

Studying microalgae in the Corpus Christi area is a natural fit for many reasons, Fernandez said.

"We have immediate access to seawater to grow microalgae," he said. "Because we're so close to the Gulf of Mexico, we've got lots of marginal land in the area where microalgae can be grown on a large scale. We have lower evaporation rates than in arid areas so water replacement is less.

"There are local power plants and oil refineries in the area that we can use as sources of carbon dioxide that helps microalgae grow while reducing CO2 pollutants. And we have a wealth of higher education institutions in the area with huge potentials to help in these studies, including Texas A&M at Corpus Christi, Texas A&M-Kingsville and Delmar College."

AgriLife Research at Corpus Christi has partnered with the Barney M. Davis Power Plant to conduct this and other studies.

"It's a natural gas-operated power plant that is an excellent source of carbon dioxide from its flue gasses that would reduce greenhouse gas emissions by passing them through microalgae systems," he said.

There also is the potential to partner with the City of Corpus Christi, which has several municipal water treatment plants in the area that can be used as sources of nutrients to reduce the cost of applying them to microalgae systems, Fernandez said.

"Our center director, Dr. Juan Landivar, took a huge leadership role in moving these microalgae projects forward by seeking and obtaining federal and private funding, and by encouraging teamwork and multi-disciplinary personnel to work on this," Fernandez said.

Rod Santa Ana | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>