Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microalgae could be Texas' next big cash crop

07.07.2011
Just as corn and peanuts stunned the world decades ago with their then-newly discovered multi-beneficial uses and applications, Texas AgriLife Research scientists in Corpus Christi think microalgae holds even more promise.

"It's a huge, untapped source of fuel, food, feed, pharmaceuticals and even pollution-busters," said Dr. Carlos Fernandez, a crop physiologist at the Texas AgriLife Research and Extension Center at Corpus Christi who is studying the physiological responses of microalgae to the environment.

There are an estimated 200,000 to 800,000 species of microalgae, microscopic algae that thrive in freshwater and marine systems, Fernandez said.

Of all those species, only 35,000 species have been described, he said.

"We're only starting to scratch the surface of discovering the natural secrets of microalgae and their many potential uses and benefits," he said. "But already it's obvious that farmers will one day soon be growing microalgae on marginal land that won't compete with fertile farmland. They won't even compete for fresh water to grow."

To understand how best to grow it, Fernandez constructed a microalgae physiology laboratory to study how it's affected by temperature, salinity, nutrients, light levels and carbon dioxide.

"We have four bioreactors in which we grow microalgae to determine the basic physiological responses that affect its growth," he said. "We will then integrate these responses into a simulator model, a tool we can use in the management of larger, outdoor systems."

In this study, different strains of microalgae will be evaluated for their capacity to produce large amounts of lipids, or fats, that can then be converted to produce and refine diesel and other biofuels, Fernandez said.

"Along with that, after extracting the lipids from the biomass of microalgae, there is a residue that we are going to analyze for its quality for use as feed for animals, including fish, shrimp or cattle."

Eventually, studies will evaluate the possibility of using the residue as a soil fertilizer.

"There are lots of other potential uses for the residue, but for now our focus is on feed and fertilizer," he said.

The microalgae study includes other researchers, Fernandez said.

"We've just started this work and we're working closely with the nearby Texas AgriLife Mariculture labs in Flour Bluff, under the direction of Dr. Tzachi Samocha, and the one in Port Aransas, under the direction of Dr. Addison Lawrence."

Studying microalgae in the Corpus Christi area is a natural fit for many reasons, Fernandez said.

"We have immediate access to seawater to grow microalgae," he said. "Because we're so close to the Gulf of Mexico, we've got lots of marginal land in the area where microalgae can be grown on a large scale. We have lower evaporation rates than in arid areas so water replacement is less.

"There are local power plants and oil refineries in the area that we can use as sources of carbon dioxide that helps microalgae grow while reducing CO2 pollutants. And we have a wealth of higher education institutions in the area with huge potentials to help in these studies, including Texas A&M at Corpus Christi, Texas A&M-Kingsville and Delmar College."

AgriLife Research at Corpus Christi has partnered with the Barney M. Davis Power Plant to conduct this and other studies.

"It's a natural gas-operated power plant that is an excellent source of carbon dioxide from its flue gasses that would reduce greenhouse gas emissions by passing them through microalgae systems," he said.

There also is the potential to partner with the City of Corpus Christi, which has several municipal water treatment plants in the area that can be used as sources of nutrients to reduce the cost of applying them to microalgae systems, Fernandez said.

"Our center director, Dr. Juan Landivar, took a huge leadership role in moving these microalgae projects forward by seeking and obtaining federal and private funding, and by encouraging teamwork and multi-disciplinary personnel to work on this," Fernandez said.

Rod Santa Ana | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>