Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microalgae could be Texas' next big cash crop

07.07.2011
Just as corn and peanuts stunned the world decades ago with their then-newly discovered multi-beneficial uses and applications, Texas AgriLife Research scientists in Corpus Christi think microalgae holds even more promise.

"It's a huge, untapped source of fuel, food, feed, pharmaceuticals and even pollution-busters," said Dr. Carlos Fernandez, a crop physiologist at the Texas AgriLife Research and Extension Center at Corpus Christi who is studying the physiological responses of microalgae to the environment.

There are an estimated 200,000 to 800,000 species of microalgae, microscopic algae that thrive in freshwater and marine systems, Fernandez said.

Of all those species, only 35,000 species have been described, he said.

"We're only starting to scratch the surface of discovering the natural secrets of microalgae and their many potential uses and benefits," he said. "But already it's obvious that farmers will one day soon be growing microalgae on marginal land that won't compete with fertile farmland. They won't even compete for fresh water to grow."

To understand how best to grow it, Fernandez constructed a microalgae physiology laboratory to study how it's affected by temperature, salinity, nutrients, light levels and carbon dioxide.

"We have four bioreactors in which we grow microalgae to determine the basic physiological responses that affect its growth," he said. "We will then integrate these responses into a simulator model, a tool we can use in the management of larger, outdoor systems."

In this study, different strains of microalgae will be evaluated for their capacity to produce large amounts of lipids, or fats, that can then be converted to produce and refine diesel and other biofuels, Fernandez said.

"Along with that, after extracting the lipids from the biomass of microalgae, there is a residue that we are going to analyze for its quality for use as feed for animals, including fish, shrimp or cattle."

Eventually, studies will evaluate the possibility of using the residue as a soil fertilizer.

"There are lots of other potential uses for the residue, but for now our focus is on feed and fertilizer," he said.

The microalgae study includes other researchers, Fernandez said.

"We've just started this work and we're working closely with the nearby Texas AgriLife Mariculture labs in Flour Bluff, under the direction of Dr. Tzachi Samocha, and the one in Port Aransas, under the direction of Dr. Addison Lawrence."

Studying microalgae in the Corpus Christi area is a natural fit for many reasons, Fernandez said.

"We have immediate access to seawater to grow microalgae," he said. "Because we're so close to the Gulf of Mexico, we've got lots of marginal land in the area where microalgae can be grown on a large scale. We have lower evaporation rates than in arid areas so water replacement is less.

"There are local power plants and oil refineries in the area that we can use as sources of carbon dioxide that helps microalgae grow while reducing CO2 pollutants. And we have a wealth of higher education institutions in the area with huge potentials to help in these studies, including Texas A&M at Corpus Christi, Texas A&M-Kingsville and Delmar College."

AgriLife Research at Corpus Christi has partnered with the Barney M. Davis Power Plant to conduct this and other studies.

"It's a natural gas-operated power plant that is an excellent source of carbon dioxide from its flue gasses that would reduce greenhouse gas emissions by passing them through microalgae systems," he said.

There also is the potential to partner with the City of Corpus Christi, which has several municipal water treatment plants in the area that can be used as sources of nutrients to reduce the cost of applying them to microalgae systems, Fernandez said.

"Our center director, Dr. Juan Landivar, took a huge leadership role in moving these microalgae projects forward by seeking and obtaining federal and private funding, and by encouraging teamwork and multi-disciplinary personnel to work on this," Fernandez said.

Rod Santa Ana | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>