Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring nitrate concentrations in leafy green vegetables

10.09.2009
Researchers compare rapid potentiometric, colorimetric methods

Leafy green vegetables such as lettuce, Asian greens, and spinach can accumulate high concentrations of nitrate–nitrogen (NO3-N), which are potentially harmful if consumed by humans. To measure NO3-N concentration in plant tissue, many laboratories use ion selective electrodes (ISEs).

Relatively inexpensive and portable ISE nutrient monitoring devices, including the Cardy NO3-N meter, are widely used to measure fresh plant sap NO3-N levels. Although conventional means of measuring plant tissue NO3-N are accurate and reliable, they often require sophisticated equipment and trained technicians and can be time-consuming, expensive, and impractical outside of a laboratory setting.

A team of researchers from Washington State University undertook a study to determine if rapid, less-expensive tissue processing and analysis methods can substitute for more laborious, expensive procedures to assess quality in leafy green vegetables. Scientists Kristy Ott-Borrelli, Richard Koenig, and Carol Miles recently published the results of their study that compared fresh sap expressed from whole leaves and analyzed with a Cardy meter with the analysis of dry leaf tissue extracts analyzed with a benchtop ion selective electrode and an automated colorimetric method for determining NO3-N concentration.

Ott-Borrelli explained the impetus for the study, stating; "It would be advantageous for growers to have rapid and inexpensive methods to accurately measure plant tissue NO3-N, allowing them to make fertility and harvest management decisions for these crops." Samples for the study were taken from a larger experiment in which 24 varieties of lettuce, Asian greens, and spinach were harvested three times at two locations during winter.

Results from ISE and colorimetric analysis of the same dry leaf tissue extracts had a strong relationship (r2 = 0.92). The ISE was relatively easy to operate and affordable, suggesting it is an adequate substitute for automated colorimetric analysis of dry plant tissue extracts.

However, results of fresh whole leaf sap analyzed with the Cardy meter showed a poor relationship with dry leaf tissue extracted and analyzed using the ISE (r2 = 0.25) or with colorimetric analysis (r2 = 0.21). The study found that Cardy meter analysis of sap expressed from whole leaves was not comparable to ISE or colorimetric analysis of dry leaf tissue extracts for leafy green vegetables.

According to the research report published in the ASHS journal HortTechnology, "the study suggests that the extraction and analysis of fresh leaf sap with a Cardy meter is not comparable to procedures in which dry leaf tissue is extracted and analyzed with ISE or colorimetric procedures to determine NO3-N concentrations."

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/19/2/439

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>