Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making microscopic worms into a more deadly insecticide

15.01.2010
Microscopic nematode worms can be a potent organic insecticide, killing crop-raiding bugs without harming plants or beneficial insects and without the environmental side effects of chemicals. But when the worms are mass-bred for agricultural purposes, they tend to, as Byron Adams says, “wimp out,” and are not as deadly as their cousins that grow in the wild.

The Brigham Young University biology professor and his students analyzed the genetic changes in lab-raised worms that make them less deadly to bugs. These results will help preserve the talents of what Adams affectionately calls “natural-born killers.” The findings also help us understand how to defeat parasites that harm beneficial plants andanimals and those that cause human disease.

The team reports its results in the new issue of BMC Genomics. Graduate student Bishwo Adhikari is the lead author; two co-authors who were undergraduates at the time are now pursuing Ph.D.s at Caltech and the University of Wisconsin.

How the worms protect crops

When the worm, called H. bacteriophora finds an insect in the soil, it crawls inside and, Adams says, “barfs up” special bacteria that had hitched a ride with the worm. The bacteria quickly kill the insect and spread, and the worm gobbles up the bacteria and reproduces. The bacteria and baby worms eat what’s left of the bug, and then head off together in search of another insect host.

Plants and other insects, such as bees, are spared, and the worms are not toxic to humans. The bacteria are only deadly when introduced inside the insect, not when ingested, and can’t survive in soil or water. So they are only a threat to the insects targeted by the worm, which include the Japanese beetle, many species of weevils, the Colorado potato beetle, cucumber beetles and many others. These pests can wreak havoc on citrus trees, turfgrass, potatoes, and many other crops.

The worms occur naturally in concentrations too small to be effective at eradicating pests. So farmers can purchase bulk quantities of nematodes mass produced in huge fermentation tanks and spread them through irrigation. Producing deadly nematodes by the barrel is the problem.

Lab-grown worms wimp out

Previous research has shown that the worms are less deadly to insects when grown away from their natural habitat. After a few generations, they don’t reproduce or find hosts as well, they have a tougher time tolerating heat and they aren’t as toxic to the bugs they do find.

“We wanted to know the genetic mechanisms that were responsible for these changes, so we did a series of experiments to look at differences in gene expression between the killers and the wimps,” said Adams.

The team examined all of the expressed genes of an inbred line (wimps) of worms and their original parental line (killers). They found differences in the expression of 1,185 genes, including those involved with metabolism, virulence and longevity.

“We show that even very small changes in the relative expression of these genes can produce large changes in wimpiness,” Adams said.

Now scientists can take steps to improve the quality of worms shipped to farmers. But that’s not what has Adams most excited about this work.

Even broader application

“The research also shows that many of the genes involved in the killer/wimp traits in these worms are unique to worms that are nasty parasites of plants, humans and other animal friends,” Adams says.

Some of these genes they identified play fundamental roles in host-parasite interactions, such as virulence and the suppression of host defense systems. That means the products of these genes could be promising targets for pharmaceuticals.

Other interventions could prevent disease by disrupting and altering the functions of these genes – taking what was learned about how the bug-killing nematodes evolved to became less deadly and leading harmful parasites down the same road.

Student contributions serve as launching pad

Two undergrads generated the “wimpy” line of worms for the study, which required experiments to prove that the genetic deterioration came about because of inbreeding and not other potential genetic causes. They are the first authors on another paper about this that has been submitted for publication.

John Chaston, featured here for his work on nematodes in Antarctica, is now a National Science Foundation fellow pursing a Ph.D. at the University of Wisconsin.

Adler Dillman is now at Caltech, studying how genes influence behavior under world renowned worm geneticist Paul Sternberg, also a co-author on the paper. By the time he graduated from BYU, Dillman had presented research at nine scientific conferences.

“Dr. Adams' attitude is unique among undergraduate professors in that he encourages students to study the primary literature and then to approach him with particular studies or questions that they find interesting,” Dillman said. “He then helps you turn that interest into a research program. Working for him was the best thing that happened to me as an undergraduate.”

Other coauthors on the paper are: BYU’s Chin-Yo Lin, Ohio State’s Xiaodong Bai and Parwinder Grewal, Michigan State’s Todd Ciche, the USDA’s David Shapiro-Ilan; and Rutgers’ Anwar Bilgrami and Randy Gaugler.

Michael Smart | EurekAlert!
Further information:
http://www.byu.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>