Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Luteolin Stars in Study of Healthful Plant Compounds

09.07.2010
Natural compounds in plants may protect us against unwanted inflammation. However, human nutrition researchers agree that many questions remain about exactly how these compounds, known as phytochemicals, do that.

Studies led by Agricultural Research Service (ARS) molecular biologist Daniel H. Hwang are providing some of the missing details.

Certain kinds of inflammation can increase risk of cancer and of some other disorders, including heart disease and insulin resistance, according to Hwang. He's with the ARS Western Human Nutrition Research Center at the University of California-Davis.

Some of Hwang's on-going studies build upon earlier research in which he and colleagues teased out precise details of how six natural compounds in plants—luteolin, quercetin, chrysin, eriodicytol, hesperetin, and naringenin—apparently act as anti-inflammatory agents.

Luteolin is found in celery, thyme, green peppers, and chamomile tea. Foods rich in quercetin include capers, apples, and onions. Chrysin is from the fruit of blue passionflower, a tropical vine. Oranges, grapefruit, lemons, and other citrus fruits are good sources of eriodicytol, hesperetin, and naringenin.

Hwang's team showed, for the first time, that all six plant compounds target an enzyme known as "TBK1." Each compound inhibits, to a greater or lesser extent, TBK1's ability to activate a specific biochemical signal. If unimpeded, the signal would lead to formation of gene products known to trigger inflammation.

Of the six compounds, luteolin was the most effective inhibitor of TBK1. Luteolin is already known to have anti-inflammatory properties. However, Hwang and his colleagues were the first to provide this new, mechanistic explanation of how luteolin exerts its anti-inflammatory effects.

The approaches that the researchers developed to uncover these compounds' effects can be used by scientists elsewhere to identify additional anti-inflammatory compounds present in fruits and vegetables.

Their findings on phytochemicals that act as TBK1 inhibitors appear in Biochemical Pharmacology and in the Journal of Immunology.

Read more about the research in the July 2010 issue of Agricultural Research magazine.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture.

Marcia Wood | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>