Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Luteolin Stars in Study of Healthful Plant Compounds

09.07.2010
Natural compounds in plants may protect us against unwanted inflammation. However, human nutrition researchers agree that many questions remain about exactly how these compounds, known as phytochemicals, do that.

Studies led by Agricultural Research Service (ARS) molecular biologist Daniel H. Hwang are providing some of the missing details.

Certain kinds of inflammation can increase risk of cancer and of some other disorders, including heart disease and insulin resistance, according to Hwang. He's with the ARS Western Human Nutrition Research Center at the University of California-Davis.

Some of Hwang's on-going studies build upon earlier research in which he and colleagues teased out precise details of how six natural compounds in plants—luteolin, quercetin, chrysin, eriodicytol, hesperetin, and naringenin—apparently act as anti-inflammatory agents.

Luteolin is found in celery, thyme, green peppers, and chamomile tea. Foods rich in quercetin include capers, apples, and onions. Chrysin is from the fruit of blue passionflower, a tropical vine. Oranges, grapefruit, lemons, and other citrus fruits are good sources of eriodicytol, hesperetin, and naringenin.

Hwang's team showed, for the first time, that all six plant compounds target an enzyme known as "TBK1." Each compound inhibits, to a greater or lesser extent, TBK1's ability to activate a specific biochemical signal. If unimpeded, the signal would lead to formation of gene products known to trigger inflammation.

Of the six compounds, luteolin was the most effective inhibitor of TBK1. Luteolin is already known to have anti-inflammatory properties. However, Hwang and his colleagues were the first to provide this new, mechanistic explanation of how luteolin exerts its anti-inflammatory effects.

The approaches that the researchers developed to uncover these compounds' effects can be used by scientists elsewhere to identify additional anti-inflammatory compounds present in fruits and vegetables.

Their findings on phytochemicals that act as TBK1 inhibitors appear in Biochemical Pharmacology and in the Journal of Immunology.

Read more about the research in the July 2010 issue of Agricultural Research magazine.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture.

Marcia Wood | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>