Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaf Litter and Soil Protect Acorns from Prescribed Fire

19.07.2012
U.S. Forest Service scientists have found that prescribed fires with the heat insulation of leaf litter and soil can help restore oak ecosystems. Forest Service researchers are helping land managers find the best time to use prescribed fire when oak regeneration from acorns is a concern.

"Acorns inside the leaf litter or in the soil are for the most part protected from fire," says Cathryn Greenberg, U.S. Forest Service Southern Research Station (SRS) researcher and lead author of the study published in July in the journal Forest Ecology and Management. "However, when acorns lie on top of the leaf litter, even low intensity surface fires will kill most of them."

Prescribed fire is increasingly used as a tool in oak ecosystem restoration, with the goal of reducing competition and creating light and seedbed conditions that help oak seedlings germinate and flourish. Forest Service researchers are helping land managers find the best time to use prescribed fires when oak regeneration from acorns is a concern.

To see how fire affected acorns, researchers placed nuts on the leaf litter surface, inside the duff (leaf litter plus smaller fragments of plant material), and underneath the duff, about 2 inches into the soil. The temperature of the prescribed burns, measured just above the surface of the leaf litter, ranged from less than 174°F to almost 700°F.

After the burn, researchers retrieved the acorns and placed them in ideal conditions for germination. "Almost all the acorns that were on the leaf litter surface and exposed to fire died," says Greenberg. "However, acorns in the duff or in the soil were better protected from high temperatures, and generally unaffected by low intensity fires."

When acorns fall to the forest floor they don’t stay on top of the leaf litter too long. Squirrels, jays, chipmunks and mice bury acorns, or they settle into the litter because of weather, falling leaves and gravity. Once acorns are blanketed by leaf litter or soil, low-intensity burns are usually safe. However, land managers should consider the timing and size of acorn crops, as well as the forest floor condition when determining the timing and frequency of prescribed burning. "Frequent burning that reduces litter and duff depth could compromise the availability of ‘safe sites’ where acorns are insulated from high fire temperatures," says Greenberg.

Access the full text of the article: http://www.srs.fs.usda.gov/pubs/40794

Cathryn Greenberg | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>