Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers used to detect melamine in baby formula

04.05.2009
With equipment readily available to health officials and businesses, a Purdue University researcher has found a way to detect trace amounts of melamine in infant formula.

Using infrared lasers and light spectroscopy methods, Lisa Mauer, an associate professor of food science, was able to detect melamine in baby formula at one part per million in about five minutes or less.

Melamine, a synthetic chemical used in plastics and other products, has been found in baby formula and other milk-based products imported from China. High doses of melamine were associated with cancer in some animals, and it is especially dangerous for infants, according to the Centers for Disease Control and Prevention.

"We have found detection methods that are inexpensive and do not require a lot of the product or time for sampling," said Mauer, whose paper on the testing method was published in the early online version of The Journal of Agricultural and Food Chemistry. "Any company could do this itself. Police agencies, state departments of health and many colleges have this type of equipment."

Mauer obtained unadulterated samples of powdered formula and measured the samples using near- and mid-infrared spectroscopy techniques. Infrared laser beams reflected off the sample and toward a detector, which calculated how much of the laser's energy was absorbed by the sample and created an absorbance spectrum that was unique to the sample.

The same data were collected for pure melamine. When the formula was mixed with melamine and analyzed, the new spectrum was compared to that of the unadulterated formula, showing the concentration of melamine in the sample.

"The melamine structure is very different than the formula, so you can see differences in the spectrum," Mauer said. "Because they are so different, we can detect down to one part per million of melamine."

Federal guidelines allow for only one part per million of melamine in infant formula and up to two and a half parts per million in other products. Having an inexpensive and quick test would make it easier to test imported or domestically made products for melamine.

"If someone wanted to build a calibration model to detect melamine in their products, all they'd have to do is collect the spectrum of their product, add known quantities of melamine to their product, then collect those spectra and compare them," Mauer said. "Thumbprint analysis is basically the same thing. We can't see the differences with our own eyes, but software programs can."

Mauer and her four graduate students found the melamine detection process after she received a new software program that she wanted the students to become familiar with. Mauer challenged them to use spectroscopy to detect melamine, thinking they might be able to do so at high concentrations.

After successful tries at higher concentrations, Mauer and the students kept lowering the concentration of melamine until they reached one part per million.

Writer: Brian Wallheimer, (765) 496-2050, bwallhei@purdue.edu
Source: Lisa Mauer, (765) 494-9111, mauer@purdue.edu
Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>