Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers used to detect melamine in baby formula

04.05.2009
With equipment readily available to health officials and businesses, a Purdue University researcher has found a way to detect trace amounts of melamine in infant formula.

Using infrared lasers and light spectroscopy methods, Lisa Mauer, an associate professor of food science, was able to detect melamine in baby formula at one part per million in about five minutes or less.

Melamine, a synthetic chemical used in plastics and other products, has been found in baby formula and other milk-based products imported from China. High doses of melamine were associated with cancer in some animals, and it is especially dangerous for infants, according to the Centers for Disease Control and Prevention.

"We have found detection methods that are inexpensive and do not require a lot of the product or time for sampling," said Mauer, whose paper on the testing method was published in the early online version of The Journal of Agricultural and Food Chemistry. "Any company could do this itself. Police agencies, state departments of health and many colleges have this type of equipment."

Mauer obtained unadulterated samples of powdered formula and measured the samples using near- and mid-infrared spectroscopy techniques. Infrared laser beams reflected off the sample and toward a detector, which calculated how much of the laser's energy was absorbed by the sample and created an absorbance spectrum that was unique to the sample.

The same data were collected for pure melamine. When the formula was mixed with melamine and analyzed, the new spectrum was compared to that of the unadulterated formula, showing the concentration of melamine in the sample.

"The melamine structure is very different than the formula, so you can see differences in the spectrum," Mauer said. "Because they are so different, we can detect down to one part per million of melamine."

Federal guidelines allow for only one part per million of melamine in infant formula and up to two and a half parts per million in other products. Having an inexpensive and quick test would make it easier to test imported or domestically made products for melamine.

"If someone wanted to build a calibration model to detect melamine in their products, all they'd have to do is collect the spectrum of their product, add known quantities of melamine to their product, then collect those spectra and compare them," Mauer said. "Thumbprint analysis is basically the same thing. We can't see the differences with our own eyes, but software programs can."

Mauer and her four graduate students found the melamine detection process after she received a new software program that she wanted the students to become familiar with. Mauer challenged them to use spectroscopy to detect melamine, thinking they might be able to do so at high concentrations.

After successful tries at higher concentrations, Mauer and the students kept lowering the concentration of melamine until they reached one part per million.

Writer: Brian Wallheimer, (765) 496-2050, bwallhei@purdue.edu
Source: Lisa Mauer, (765) 494-9111, mauer@purdue.edu
Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>