Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landfill Cover Soil Methane Oxidation Underestimated

28.04.2009
A literature review reveals that landfill cover soils oxidize more methane than guidelines suggest.

Landfilled waste decomposes in the absence of oxygen and results in the production of methane. Landfills are classified as the second-largest human-made source of CH4 in the U.S. Additionally, landfill gas contains numerous non-methane hydrocarbons that are either volatilized directly from waste materials or produced through biochemical reactions during waste degradation.

Microbial methane oxidation reduces the emissions of methane and other volatile hydrocarbons from landfills. Determining the importance of this process is one of the major uncertainties in estimating national or global CH4 emissions from landfills. Landfill gas that is not collected passes through landfill cover soils on the way to being released to the environment. Bacteria in the soil consume methane and other volatile hydrocarbons that are produced by decomposition in the underlying waste by reacting it with oxygen.

A value of 0 to 10% oxidation has been recommended by the Intergovernmental Panel on Climate Change guidelines for national greenhouse gas inventories. Currently, for regulatory purposes the USEPA has recommended a default value for landfill cover CH4 oxidation of 10% due to the uncertainty involved and the lack of a standard method to determine oxidation rate.

Drs. Jeffrey Chanton, David Powelson, and Roger Green of Florida State University and Waste Management Inc. reviewed and compiled literature results from 42 determinations of the fraction of methane oxidized and 30 determinations of methane oxidation rate in a variety of soil types and landfill covers. The results were published in the March-April issue of the Journal of Environmental Quality. The means for the fraction of methane oxidized upon transit across the differing types of soil covers ranged from 22% in clayey soil to 55% in sandy soil. The overall mean fraction oxidized across all studies was 36% with a standard error of 6%. For a subset of fifteen studies conducted over an annual cycle the fraction of methane oxidized ranged from 11 to 89% with a mean value of 35 ± 6%, a value that was nearly identical to the overall mean.

The literature summarized in this paper indicates that the fraction of methane oxidized in landfill cover soils is considerably greater than the default value of 10%. Of the 42 determinations of methane oxidation only four reported values of 10% or less. One reported a value of 10%. This particular study was the first to report a well constrained value for the fraction of methane oxidized in a specific landfill, and because of this, it has received undue weight in the determination of regulations. The default value of 10% should be updated based upon technological advancements in soil engineering and state-of-the-practice applications in cover design as well as recent studies detailed journals such as Journal of Environmental Quality.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/38/2/654.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>