Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landfill Cover Soil Methane Oxidation Underestimated

28.04.2009
A literature review reveals that landfill cover soils oxidize more methane than guidelines suggest.

Landfilled waste decomposes in the absence of oxygen and results in the production of methane. Landfills are classified as the second-largest human-made source of CH4 in the U.S. Additionally, landfill gas contains numerous non-methane hydrocarbons that are either volatilized directly from waste materials or produced through biochemical reactions during waste degradation.

Microbial methane oxidation reduces the emissions of methane and other volatile hydrocarbons from landfills. Determining the importance of this process is one of the major uncertainties in estimating national or global CH4 emissions from landfills. Landfill gas that is not collected passes through landfill cover soils on the way to being released to the environment. Bacteria in the soil consume methane and other volatile hydrocarbons that are produced by decomposition in the underlying waste by reacting it with oxygen.

A value of 0 to 10% oxidation has been recommended by the Intergovernmental Panel on Climate Change guidelines for national greenhouse gas inventories. Currently, for regulatory purposes the USEPA has recommended a default value for landfill cover CH4 oxidation of 10% due to the uncertainty involved and the lack of a standard method to determine oxidation rate.

Drs. Jeffrey Chanton, David Powelson, and Roger Green of Florida State University and Waste Management Inc. reviewed and compiled literature results from 42 determinations of the fraction of methane oxidized and 30 determinations of methane oxidation rate in a variety of soil types and landfill covers. The results were published in the March-April issue of the Journal of Environmental Quality. The means for the fraction of methane oxidized upon transit across the differing types of soil covers ranged from 22% in clayey soil to 55% in sandy soil. The overall mean fraction oxidized across all studies was 36% with a standard error of 6%. For a subset of fifteen studies conducted over an annual cycle the fraction of methane oxidized ranged from 11 to 89% with a mean value of 35 ± 6%, a value that was nearly identical to the overall mean.

The literature summarized in this paper indicates that the fraction of methane oxidized in landfill cover soils is considerably greater than the default value of 10%. Of the 42 determinations of methane oxidation only four reported values of 10% or less. One reported a value of 10%. This particular study was the first to report a well constrained value for the fraction of methane oxidized in a specific landfill, and because of this, it has received undue weight in the determination of regulations. The default value of 10% should be updated based upon technological advancements in soil engineering and state-of-the-practice applications in cover design as well as recent studies detailed journals such as Journal of Environmental Quality.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/38/2/654.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>