Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hydrocooling shows promise for reducing strawberry weight loss, bruising

Research offers recommendations for improved commercial strawberry handling

Strawberries are very fragile and highly susceptible to mechanical injury during commercial production. Growers interested in ways to increase profits and reduce product loss are seeking improved handling and temperature management techniques.

Collaborative research from scientists from the Brazilian Agricultural Research Corporation—Embrapa and the University of Florida contains several findings that show promise to significantly improve commercial strawberry handling.

Because of their fragile nature, strawberries must be harvested when they are ripe to minimize bruising, a critical concern leading to product and revenue losses for growers. Bruising is caused by impact, compression, and vibration forces. Impact bruising results from a sudden sharp force—for example when a fruit falls onto another fruit or onto a hard surface, or when an object strikes the fruit. Compression bruising occurs when tissue is subjected to a constant force such as during hand-harvest (finger pressure), or when the fruit is on the bottom layer of a container.

To replicate commercial handling conditions, the research team used forced-air or hydrocooling with three strawberry cultivars ('Chandler', 'Oso Grande', and 'Sweet Charlie') to reach pulp temperatures of 1 or 30ºC, then subjected the fruit to compression and impact forces. The fruit was subsequently evaluated for bruising; each berry was sliced through the center of the impact area and was considered to be bruised if damaged tissue was visible below the impact area.

Strawberries with a pulp temperature of 24°C exhibited sensitivity to compression but greater resistance to impacts. As pulp temperature decreased, fruit were less susceptible to compression, as shown by up to 60% reduction in bruise volume. In contrast, strawberries at 1°C pulp temperature had more severe impact bruising, with up to 93% larger bruise volume than at 24°C, depending on the cultivar.

Strawberries also showed different susceptibility to impact bruises depending on the cooling method. Impacted fruit that were forced-air cooled had larger bruise volumes than those that were hydrocooled. The impact bruise volume for strawberries forced-air cooled to 1°C was 29% larger than for fruit hydrocooled to 20°C, 84% higher than those forced-air cooled to 20°C, and 164% higher than those hydrocooled to 1°C.

The results proved that strawberries had different responses to compression and impact forces based on pulp temperature. Fruit at low temperature were more resistant to compression, while fruit at higher temperatures were more resistant to impact. This finding translates to practical recommendations for commercial strawberry growers, suggesting that fruit bruising caused by compression may be minimized by harvesting and transporting early in the day when pulp temperatures are lowest.

According to the report, "there is potential for strawberries to be graded and packed on a packing line; however, impact bruising at transfer points must be minimized. In this scenario, the strawberries could be harvested into field lugs (two or three layers deep of fruit) and transported to the packing house. It would be more advantageous to use hydrocooling than forced-air cooling because hydrocooling cools fruit at a much faster rate."

The authors added that because incidence and severity of impact and compression bruises are temperature-dependent, strawberry growers should consider pulp temperature for harvest scheduling and for potential grading on a packing line. "Hydrocooling shows to rapidly cool strawberry fruit while reducing weight loss and bruising sensitivity," they concluded.

The complete study and abstract are available on the ASHS HortScience electronic journal web site:

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at

Michael W. Neff | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>