Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher carbon dioxide may give pines competitive edge

04.08.2009
Pine trees grown for 12 years in air one-and-a-half times richer in carbon dioxide than today's levels produced twice as many seeds of at least as good a quality as those growing under normal conditions, a Duke University-led research team reported Monday (Aug. 3) at a national ecology conference.

Carbon dioxide readings that high are expected everywhere by mid-century. The findings suggest some woody tree species could, in the future, out-compete grasses and other herbaceous plants that scientists had previously found can also produce more seeds under high-CO2, but of inferior quality.

"Even if both groups were producing twice as many seeds, if the trees are producing high-quality seeds and the herbaceous species aren't, then competitively you can get a shift," said Danielle Way, a Duke post-doctoral researcher.

Way is scheduled to present the results at a poster session 5 p.m. Aug. 3 during the Ecological Society of America's 2009 annual meeting in Albuquerque, N.M. She is also first author of a report on the study scheduled for publication in the research journal Global Change Biology.

Way and her co-researchers collected, counted and analyzed seeds produced at the Duke Free Air CO2 Enrichment (FACE) site in Duke Forest, near the university's campus. There, growing parcels of loblolly pine trees have been receiving elevated amounts of CO2 around the clock since 1997 in a Department of Energy-funded project designed to simulate natural growing conditions.

Their analysis found the high-CO2 loblolly seeds were similar in nutrient content, germination and growth potential to seeds from trees growing under present-day CO2 concentrations. "If anything, they actually seem to be slightly better seeds rather than more seeds of poorer quality," Way said.

"The notion here is that if the trees are producing more high-quality seeds at high CO2 compared to grasses and herbs, then the trees may be at an advantage," added study participant Robert Jackson. Jackson is Way's advisor at Duke, where he is a biology professor, as well as professor of global environmental change at the university's Nicholas School of the Environment.

The ultimate competitive outcome will depend on how other trees comparatively respond to high-CO2, said James Clark, another Duke biology professor and Nicholas School professor of the environment who also participated in the study. "We don't know that yet, because we only have estimates for loblolly pines," Clark said.

Other study participants included Shannon LaDeau, now at the Cary Institute of Ecosystem Studies at Millbrook, N.Y.; Heather McCarthy, now at the University of California at Irvine; Ram Oren, a Nicholas School ecology professor who directs the FACE experiments; and Adrien Finzi, an associate biology professor at Boston University.

Jackson is also organizing a symposium Thursday, Aug. 6, at the ecological society annual meeting on using geo-engineering to fight climate change. Information on that symposium is available at http://eco.confex.com/eco/2009/techprogram/S4143.HTM .

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>