Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping pigs to digest phosphorus

18.07.2012
Phosphorus is a vital nutrient for pig growth, but pigs do not always digest it well. Research conducted at the University of Illinois has determined how adding various levels of the enzyme phytase to the diet improves how pigs digest the phosphorus in four different feed ingredients. Improving phosphorus digestibility has positive implications for producers' bottom lines as well as for the environment.

"The majority of the phosphorus in plant feed ingredients is bound in phytate," said U of I animal sciences professor Hans Stein. “It is difficult for pigs to utilize that phosphorus because they cannot hydrolyze that phytate molecule. There is an exogenous enzyme called phytase that helps the pigs hydrolyze that phosphorus bond from phytate so the digestibility is increased.”

However, there are no data on the response to different levels of phytase in the diet. “It's not known if we need to add 500, or 1,000, or 1,500 units of phytase to get a maximum response, and it's also not known if the response is the same when we use different feed ingredients,” Stein said.

Stein's team tested the digestibility of phosphorus in conventional corn grain, corn germ, distillers dried grains with solubles (DDGS), and high-protein distillers dried grains (DDG). They tested each ingredient with no phytate and with 500 units, 1,000 units, and 1,500 units of added phytate.

Supplementation with 500, 1,000, and 1,500 units of phytate increased phosphorus digestibility from 40.9 percent in corn grain with no added phytate to 67.5, 64.5, and 74.9 percent, respectively. Phosphorus digestibility in corn germ increased from 40.7 percent to 59.0, 64.4, and 63.2 percent, respectively. Digestibility of phosphorus in DDGS increased from 76.9 percent to 82.9, 82.5, and 83.0 percent, respectively, but the increase was not significant. Phosphorus digestibility in high protein DDG increased from 77.1 percent to 88.0, 84.1, and 86.9 percent, respectively.

"What we discovered was that for corn and corn germ, we had a low digestibility without phytase, but as we added phytase to the diet, we increased the digestibility quite dramatically," Stein said.

For DDGS and high-protein DDG, the result was quite different. Because these two ingredients have been fermented, some of those phytate bonds are hydrolyzed in the ethanol plant and therefore, less of the phosphorus is bound to phytate in DDGS and high-protein DDG.

“When we added phytase to DDGS, we did not see a significant increase in digestibility because the digestibility was already very high. And the same was true for HP DDG,” said Stein. “What this tells us is that the effect of phytase depends on the particular ingredient. If it's an ingredient that has a lot of phosphorus bound to phytate, we see a nice response, but if it doesn't have much phosphorus bound to phytate, we don't see nearly as much of a response.”

The second finding was that the response to phytase is not linear. “The response to the initial 500 units of phytase is much greater than if we add another 500 units or another 500 units after that,” said Stein. “It's a curvilinear response, even for the ingredients where a good response is obtained.”

The researchers developed equations to predict the response to every level of phytase supplementation up to 1,500 units.

This research will help producers and feed companies to increase the digestibility of phosphorus in ingredients they are already feeding, thus avoiding the expense of adding dicalcium phosphate or monocalcium phosphate to swine diets.

"With current prices, it's less expensive to use phytase than it is to use dicalcium phosphate or monocalcium phosphate," Stein pointed out. Use of phytase to improve phosphorus digestibility also reduces the amount of phosphorus excreted in feces, which in turn reduces the environmental impact of swine production.

Stein's lab is continuing its research into phytase supplementation and is currently testing different sources of canola meal and soybean meal. He and his team plan to conduct similar research for all major feed ingredients used in U.S. swine diets.

The study was published in a recent issue of the Journal of Animal Science and was co-authored with doctoral candidate Ferdinando Almeida.

Susan Jongeneel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>