Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping Corn-Based Plastics Take More Heat

03.09.2010
Your favorite catsup or fruit juice might be "hot-filled" at the food-processing plant—that is, poured into its waiting container while the catsup or juice is still hot from pasteurization. Current containers made from corn-based plastics literally can't take the heat of hot-filling, according to U.S. Department of Agriculture (USDA) chemist William J. Orts.

But Orts and a team of collaborators from Lapol, LLC, of Santa Barbara, Calif., hope to change that by making corn-derived plastics more heat-tolerant. Orts and Lapol co-investigators Allison Flynn and Lennard Torres are doing the work at the Agricultural Research Service (ARS) Western Regional Research Center in Albany, Calif., where Orts leads the Bioproduct Chemistry and Engineering Research Unit. ARS is USDA's principal intramural scientific research agency.

By boosting the bioplastics' heat tolerance, the collaboration—under way since 2007—may broaden the range of applications for which corn-derived plastics could be used as an alternative to petroleum-based plastics.

Corn-based plastics are made by fermenting corn sugar to produce lactic acid. The lactic acid is used to form polylactic acid, or PLA, a bioplastic. The Albany team is developing a product known as a heat-deflection temperature modifier that would be blended with PLA to make it more heat-tolerant.

The modifier is more than 90 percent corn-based and is fully biodegradable. There currently are no commercially available heat-deflection temperature modifiers for PLA, according to Randall L. Smith, chief operating officer at Lapol. ARS and Lapol are seeking a patent for the invention.

Read more about this and other ARS corn research in the September 2010 issue of Agricultural Research magazine.

http://www.ars.usda.gov/is/pr/2010/100901.htm

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Marcia Wood | Newswise Science News
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>