Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing sorghum for biofuel

11.11.2010
Iowa State researchers examine the efficiencies and environmental impacts of growing sorghum for ethanol

Conversion of sorghum grass to ethanol has increased with the interest in renewable fuel sources. Researchers at Iowa State University examined 12 varieties of sorghum grass grown in single and double cropping systems. The experiment was designed to test the efficiency of double cropping sorghum grass to increase its yield for biofuel production.

The author of the report, Ben Goff, found that using sorghum from a single-cropping system was more effective for the production of ethanol. Since most of the ethanol currently produced in the United States is derived from corn, Goff suggests that corn may not be able to meet the energy needs of the country. According to the study, only 15 to 25% of the energy requirements would be fulfilled using corn or starch-based ethanol; however, ethanol produced from cellulose could be more effective than previous biofuels.

Goff states that from a production standpoint, growing sorghum as a sole crop is more efficient for ethanol production, however, it remains to be seen whether the favorable long-term environmental benefits, such as reduced erosion potential, of the double-cropping systems merits the reduced total biomass production.

Although certain genotypes of sorghum from the double-cropping system yielded total biomass equal to those in the single-cropping study, all of the sorghum varieties in the single-cropping system had consistently higher ethanol yields.

The author theorizes that these altered chemical compositions could be attributed to the different cropping systems.

Goff recommends that further research on double-cropping systems for ethanol production should focus on efforts to maximize production of sorghum, such as incorporating a winter crop that matures earlier in the season. This would allow planting of the sorghum closer to its optimal date and capitalize on its ability to produce greater and higher-quality biomass over a greater portion of the growing season.

This study was funded by the Iowa Energy Center and published in the November/December 2010 issue of Agronomy Journal from the American Society of Agronomy.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at www.agronomy.org/publications/aj/abstracts/102/6/1586.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: www.agronomy.org/publications/aj

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.sciencesocieties.org

Further reports about: Agronomy Iowa chemical composition cropping systems ethanol production

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>