Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing sorghum for biofuel

11.11.2010
Iowa State researchers examine the efficiencies and environmental impacts of growing sorghum for ethanol

Conversion of sorghum grass to ethanol has increased with the interest in renewable fuel sources. Researchers at Iowa State University examined 12 varieties of sorghum grass grown in single and double cropping systems. The experiment was designed to test the efficiency of double cropping sorghum grass to increase its yield for biofuel production.

The author of the report, Ben Goff, found that using sorghum from a single-cropping system was more effective for the production of ethanol. Since most of the ethanol currently produced in the United States is derived from corn, Goff suggests that corn may not be able to meet the energy needs of the country. According to the study, only 15 to 25% of the energy requirements would be fulfilled using corn or starch-based ethanol; however, ethanol produced from cellulose could be more effective than previous biofuels.

Goff states that from a production standpoint, growing sorghum as a sole crop is more efficient for ethanol production, however, it remains to be seen whether the favorable long-term environmental benefits, such as reduced erosion potential, of the double-cropping systems merits the reduced total biomass production.

Although certain genotypes of sorghum from the double-cropping system yielded total biomass equal to those in the single-cropping study, all of the sorghum varieties in the single-cropping system had consistently higher ethanol yields.

The author theorizes that these altered chemical compositions could be attributed to the different cropping systems.

Goff recommends that further research on double-cropping systems for ethanol production should focus on efforts to maximize production of sorghum, such as incorporating a winter crop that matures earlier in the season. This would allow planting of the sorghum closer to its optimal date and capitalize on its ability to produce greater and higher-quality biomass over a greater portion of the growing season.

This study was funded by the Iowa Energy Center and published in the November/December 2010 issue of Agronomy Journal from the American Society of Agronomy.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at www.agronomy.org/publications/aj/abstracts/102/6/1586.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: www.agronomy.org/publications/aj

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.sciencesocieties.org

Further reports about: Agronomy Iowa chemical composition cropping systems ethanol production

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>