Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Growing sorghum for biofuel

Iowa State researchers examine the efficiencies and environmental impacts of growing sorghum for ethanol

Conversion of sorghum grass to ethanol has increased with the interest in renewable fuel sources. Researchers at Iowa State University examined 12 varieties of sorghum grass grown in single and double cropping systems. The experiment was designed to test the efficiency of double cropping sorghum grass to increase its yield for biofuel production.

The author of the report, Ben Goff, found that using sorghum from a single-cropping system was more effective for the production of ethanol. Since most of the ethanol currently produced in the United States is derived from corn, Goff suggests that corn may not be able to meet the energy needs of the country. According to the study, only 15 to 25% of the energy requirements would be fulfilled using corn or starch-based ethanol; however, ethanol produced from cellulose could be more effective than previous biofuels.

Goff states that from a production standpoint, growing sorghum as a sole crop is more efficient for ethanol production, however, it remains to be seen whether the favorable long-term environmental benefits, such as reduced erosion potential, of the double-cropping systems merits the reduced total biomass production.

Although certain genotypes of sorghum from the double-cropping system yielded total biomass equal to those in the single-cropping study, all of the sorghum varieties in the single-cropping system had consistently higher ethanol yields.

The author theorizes that these altered chemical compositions could be attributed to the different cropping systems.

Goff recommends that further research on double-cropping systems for ethanol production should focus on efforts to maximize production of sorghum, such as incorporating a winter crop that matures earlier in the season. This would allow planting of the sorghum closer to its optimal date and capitalize on its ability to produce greater and higher-quality biomass over a greater portion of the growing season.

This study was funded by the Iowa Energy Center and published in the November/December 2010 issue of Agronomy Journal from the American Society of Agronomy.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit:

The American Society of Agronomy (ASA), is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:

Further reports about: Agronomy Iowa chemical composition cropping systems ethanol production

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>