Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growers can boost benefits of broccoli and tomatoes

17.05.2010
A University of Illinois study has demonstrated that agronomic practices can greatly increase the cancer-preventive phytochemicals in broccoli and tomatoes.

"We enriched preharvest broccoli with different bioactive components, then assessed the levels of cancer-fighting enzymes in rats that ate powders made from these crops," said Elizabeth Jeffery, a U of I professor of food science and human nutrition.

The highest levels of detoxifying enzymes were found in rats that ate selenium-treated broccoli. The amount of one of the cancer-fighting compounds in broccoli was six times higher in selenium-enriched broccoli than in standard broccoli powder, she said.

Selenium-treated broccoli was also most active in the liver, reaching a level of bioactivity that exceeded the other foods used in the experiment.

"We were intrigued to find that selenium initiated this amount of bioactivity," she said.

Along with garlic and other plants of the allium family, broccoli and other plants of the brassica family are unique in having a methylating enzyme that enables plants to store high concentrations of selenium, she said.

"Our bodies need a certain amount of selenium, but many areas of the world, including parts of the United States and vast areas of China, have very little selenium in the soil," she said.

"Not only could selenium in broccoli deliver this necessary mineral, it also appears to rev up the vegetable's cancer-fighting power," she added.

Jeffery is now working to determine whether selenium compounds are directly responsible for the increase in bioactivity or if selenium acts indirectly by directing new synthesis of the broccoli bioactives called glucosinolates.

In a previous study, Jeffery and U of I colleague John W. Erdman Jr. showed that tomato and broccoli powders eaten together are more effective in slowing prostate cancer in laboratory rats than either tomato or broccoli alone.

In their current research, they are experimenting with ways to increase the bioactive components in these foods in order to test the efficacy of enriched broccoli and tomatoes in a new prostate cancer study.

Rats were fed diets with food powders containing 10 percent of either standard broccoli; standard tomato; lycopene-enriched tomato; tomato enriched with lycopene and other carotenoids; broccoli sprouts, which contain very high levels of cancer-fighting compounds; or broccoli grown on soil treated with selenium.

The scientists found that greater amounts of bioactive components in the food powders translated into increased levels of the compounds in body tissue and increased bioactivity in the animals.

Carotenoid-enriched tomatoes produced more bioactivity in the liver than lycopene-enriched or standard tomatoes, yielding the most cancer-preventive benefits.

"Carotenoids, which are phytochemical pigments found in fruits and vegetables, are thought to be excellent antioxidants and effective in cancer prevention," said Ann G. Liu, a U of I graduate student who worked on the study.

"A good rule is: the brighter the color, the higher the carotenoid content. If you're growing or buying tomatoes, select plants or produce that are a very bright red. High-lycopene tomatoes are now available through garden catalogs," she added.

"This research shows that you can greatly increase a food's bioactive benefits through normal farming practices, without resorting to genetic engineering. Farmers have traditionally been more concerned about yield than nutritional composition. Now we're asking, can we grow more nutritional broccoli and tomatoes? And the answer is a definite yes," said Jeffery.

The study was published in the Journal of Agricultural and Food Chemistry. Liu and Sonja E. Volker co-authored the paper with Jeffery and Erdman.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>