Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundwater Depletion in Semiarid Regions of Texas and California Threatens U.S. Food Security

29.05.2012
The nation's food supply may be vulnerable to rapid groundwater depletion from irrigated agriculture, according to a new study by researchers at The University of Texas at Austin and elsewhere.

The study, which appears in the journal Proceedings of the National Academy of Sciences, paints the highest resolution picture yet of how groundwater depletion varies across space and time in California's Central Valley and the High Plains of the central U.S. Researchers hope this information will enable more sustainable use of water in these areas, although they think irrigated agriculture may be unsustainable in some parts.

"We're already seeing changes in both areas," said Bridget Scanlon, senior research scientist at The University of Texas at Austin's Bureau of Economic Geology and lead author of the study. "We're seeing decreases in rural populations in the High Plains. Increasing urbanization is replacing farms in the Central Valley. And during droughts some farmers are forced to fallow their land. These trends will only accelerate as water scarcity issues become more severe."

Three results of the new study are particularly striking: First, during the most recent drought in California's Central Valley, from 2006 to 2009, farmers in the south depleted enough groundwater to fill the nation's largest man-made reservoir, Lake Mead near Las Vegas—a level of groundwater depletion that is unsustainable at current recharge rates.

Second, a third of the groundwater depletion in the High Plains occurs in just 4% of the land area. And third, the researchers project that if current trends continue some parts of the southern High Plains that currently support irrigated agriculture, mostly in the Texas Panhandle and western Kansas, will be unable to do so within a few decades.

California's Central Valley is sometimes called the nation's "fruit and vegetable basket." The High Plains, which run from northwest Texas to southern Wyoming and South Dakota, are sometimes called the country's "grain basket." Combined, these two regions produced agricultural products worth $56 billion in 2007, accounting for much of the nation's food production. They also account for half of all groundwater depletion in the U.S., mainly as a result of irrigating crops.

In the early 20th century, farmers in California's Central Valley began pumping groundwater to irrigate their crops. Over time, groundwater levels dropped as much as 400 feet in some places. From the 1930s to ’70s, state and federal agencies built a system of dams, reservoirs and canals to transfer water from the relatively water-rich north to the very dry south. Since then, groundwater levels in some areas have risen as much as 300 feet. In the High Plains, farmers first began large-scale pumping of groundwater for crop irrigation in the 1930s and ’40s; but irrigation greatly expanded in response to the 1950s drought. Since then, groundwater levels there have steadily declined, in some places more than 150 feet.

Scanlon and her colleagues at the U.S. Geological Survey and the Université de Rennes in France used water level records from thousands of wells, data from NASA's GRACE satellites, and computer models to study groundwater depletion in the two regions.

GRACE satellites monitor changes in Earth’s gravity field which are controlled primarily by variations in water storage. Byron Tapley, director of the university's Center for Space Research, led the development of the GRACE satellites, which recently celebrated their 10th anniversary.

Scanlon and her colleagues suggested several ways to make irrigated agriculture in the Central Valley more sustainable: Replace flood irrigation systems (used on about half of crops) with more efficient sprinkle and drip systems and expand the practice of groundwater banking—storing excess surface water in times of plenty in the same natural aquifers that supply groundwater for irrigation. Groundwater banks currently store 2 to 3 cubic kilometers of water in California, similar to or greater than storage capacities of many of the large surface water reservoirs in the state. Groundwater banks provide a valuable approach for evening out water supplies during climate extremes ranging from droughts to floods.

For various reasons, Scanlon and other experts don't think these or other engineering approaches will solve the problem in the High Plains. When groundwater levels drop too low to support irrigated farming in some areas, farmers there will be forced to switch from irrigated crops such as corn to non-irrigated crops such as sorghum, or to rangeland. The transition could be economically challenging because non-irrigated crops generate about half the yield of irrigated crops and are far more vulnerable to droughts.

"Basically irrigated agriculture in much of the southern High Plains is unsustainable," said Scanlon.

Marc Airhart | Newswise Science News
Further information:
http://www.utexas.edu

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>