Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene's past could improve the future of rice

27.01.2009
In an effort to improve rice varieties, a Purdue University researcher was part of a team that traced the evolutionary history of domesticated rice by using a process that focuses on one gene.

Scott A. Jackson, a professor of agronomy, said studying the gene that decides how many shoots will form on a rice plant allows researchers to better understand how the gene evolved over time through natural selection and human interaction. Understanding the variations could allow scientists to place genes from wild rice species into domesticated rice to create varieties with more branching, increased plant size or other favorable characteristics.

By comparing the domesticated plant to other wild rice species, they discovered a lot of genetic variation in rice over millions of years.

"This is a way to find these valuable genes in non-domesticated rice and bring them into cultivated rice," Jackson said. "We need to grow more food to feed the human population, and it needs to be done on less land and with less water. This could be the way to do that."

Jackson worked with Rod A. Wing of the University of Arizona and Mingsheng Chen of the Chinese Academy of Sciences in Beijing, and they were the corresponding authors for the study. Their findings are published in the Proceedings of the National Academy of Sciences online version this week.

The research team developed a tool to compare genes in different species of Oryza, of which domesticated rice is a species. Jackson said the comparisons showed how rice has changed from as far back as 14 million years ago. As rice adapted to climate changes and other natural circumstances, its genetic structure changed, keeping some genes and losing others.

About 10,000 years ago, humans began making their own genetic modifications, albeit unknowingly, by choosing plants that had favorable traits. As they stopped growing plants with unfavorable characteristics, genes responsible for those traits disappeared.

"Humans knew that if the seeds stayed on the plant, or it had a higher yield, they could save some of the seeds to plant next year," Jackson said. "That was unintentional breeding."

Those favorable genes are still around in wild rice species because they were valuable for plants in other climates or situations, he said.

Jackson was involved with earlier research that looked at cell structure in rice and also is studying the gene responsible for flowering in rice plants. Once those genes are better understood, scientists can match the best genes for particular climates to give growers better yields.

One example can be found in a variety of rice that has genes making it drought-resistant. Scientists could breed those genes into domesticated rice in Africa where water shortages can devastate crops.

National Science Foundation funding contributed to the research in addition to other grants.

Writer: Brian Wallheimer, (765) 496-2050, bwallhei@purdue.edu
Source: Scott A. Jackson, (765) 496-3621, sjackson@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>