Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene's past could improve the future of rice

27.01.2009
In an effort to improve rice varieties, a Purdue University researcher was part of a team that traced the evolutionary history of domesticated rice by using a process that focuses on one gene.

Scott A. Jackson, a professor of agronomy, said studying the gene that decides how many shoots will form on a rice plant allows researchers to better understand how the gene evolved over time through natural selection and human interaction. Understanding the variations could allow scientists to place genes from wild rice species into domesticated rice to create varieties with more branching, increased plant size or other favorable characteristics.

By comparing the domesticated plant to other wild rice species, they discovered a lot of genetic variation in rice over millions of years.

"This is a way to find these valuable genes in non-domesticated rice and bring them into cultivated rice," Jackson said. "We need to grow more food to feed the human population, and it needs to be done on less land and with less water. This could be the way to do that."

Jackson worked with Rod A. Wing of the University of Arizona and Mingsheng Chen of the Chinese Academy of Sciences in Beijing, and they were the corresponding authors for the study. Their findings are published in the Proceedings of the National Academy of Sciences online version this week.

The research team developed a tool to compare genes in different species of Oryza, of which domesticated rice is a species. Jackson said the comparisons showed how rice has changed from as far back as 14 million years ago. As rice adapted to climate changes and other natural circumstances, its genetic structure changed, keeping some genes and losing others.

About 10,000 years ago, humans began making their own genetic modifications, albeit unknowingly, by choosing plants that had favorable traits. As they stopped growing plants with unfavorable characteristics, genes responsible for those traits disappeared.

"Humans knew that if the seeds stayed on the plant, or it had a higher yield, they could save some of the seeds to plant next year," Jackson said. "That was unintentional breeding."

Those favorable genes are still around in wild rice species because they were valuable for plants in other climates or situations, he said.

Jackson was involved with earlier research that looked at cell structure in rice and also is studying the gene responsible for flowering in rice plants. Once those genes are better understood, scientists can match the best genes for particular climates to give growers better yields.

One example can be found in a variety of rice that has genes making it drought-resistant. Scientists could breed those genes into domesticated rice in Africa where water shortages can devastate crops.

National Science Foundation funding contributed to the research in addition to other grants.

Writer: Brian Wallheimer, (765) 496-2050, bwallhei@purdue.edu
Source: Scott A. Jackson, (765) 496-3621, sjackson@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>