Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foot and mouth disease in sub-Saharan Africa moves over short distances, wild buffalo are a problem

22.10.2013
New research shows that in sub-Saharan Africa the virus responsible for foot and mouth disease (FMD) moves over relatively short distances and the African buffalo are important natural reservoirs for the infection.

The study, published in mBio®, the online open-access journal of the American Society for Microbiology, sheds light on how the type of FMD virus called SAT 2 emerged in sub-Saharan Africa and identifies patterns of spread in countries where SAT 2 is endemic.

"The data suggest that the common ancestor of all SAT 2 was in [African] buffalo. It's very clear that historically infections have moved from buffalo to cattle," says corresponding author Matthew Hall of the University of Edinburgh in Scotland.

Foot and mouth disease (FMD) is devastating to livestock all over the world, but it's a particular problem in Africa, where wildlife that harbor the virus are thought to pass it on to their domesticated cousins.

FMD strikes cloven-hoofed animals, presenting as a high fever, blistering in the mouth and feet, decline in milk production in females, and weight loss. Although most animals recover over the course of months, some die of complications from the disease. In wild buffalo, the disease is very rarely symptomatic and animals can be persistently infected for a period of several years. The SAT 2 serotype of the virus is endemic in sub-Saharan Africa, but it has crossed the Sahara and caused outbreaks in North Africa and the Middle East between 1990 and 2012.

In the hopes they could eventually predict future outbreaks, Hall and his colleagues wanted a better picture of the diversity of SAT 2 viruses in sub-Saharan Africa and how they move around from one location to another. They used 250 genetic sequences of the VP1 section of the genome from SAT 2 isolates taken from all over sub-Saharan Africa and tracked the appearance of the various unique 'topotypes' over the region.

Hall says the patterns in which the topotypes appear in different places gives strong support to the idea that the virus is spread by infected hosts in land movements over relatively short distances. What's more, African buffalo are an important "maintenance host", meaning they maintain a reservoir of the virus that can re-infect domesticated animals after time and culling has ended an outbreak among livestock. The relationships between the 250 sequences also indicate that it's possible the original source of the SAT 2 viruses that are now found in wild and domesticated animals was African buffalo.

To Hall, these results indicate that genetic tracking of viruses has a lot of potential for making inferences about viral spread and heading off future outbreaks.

"We showed that we can demonstrate [virus movement] using genetic data. It's a tool that can be used for that kind of inference. In cases where less is known, this is a valid way of going about answering the questions," says Hall.

Going forward, Hall says he plans to apply a similar approach to studying serotype O FMD viruses in Africa, Asia, and South America to identify links between different animal populations. "It's good to know the reason it spreads," says Hall. "It could be quite a contribution to eradication or control efforts."

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>