Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment shows potential for vegetation to recover at the Sierra Nevada ski station

08.12.2008
Preparation work on the ski slopes in Spain’s Sierra Nevada destroys a large number of plant species.

In their efforts to develop new methods to restore plant cover, researchers from the University of Granada have now successfully grown the area’s two native shrub species in the laboratory. They hope to use these to guarantee the biodiversity of the Sierra Nevada National Park.

The plant species of the Sierra Nevada account for 30% of Spain’s total flora, but are suffering degradation as a result of maintenance work carried out by heavy machinery on the ski slopes. Soil erosion and the loss of biodiversity are getting worse, particularly as 80 out of the 2,000 vascular plants growing in the area are endemic to these mountains.

This new experiment, the results of which will be published in the next issue of the Central European Journal of Biology, will allow “the restoration of degraded areas, fine-tuning of the current methodologies used to restore plant cover and ensure integration with the landscape, and also promote the maintenance of biodiversity in the fragile area of the Sierra Nevada”, Francisco Serrano Bernardo, lead author of the study and a researcher in the Environmental Technologies Department at the University of Granada, told SINC.

The scientists studied two shrub species native to the Sierra Nevada, along with other taxa: Genista versicolor Boiss (Leguminous) and Reseda

complicata Bory (Resedaceous), which occupy an ecological niche found primarily in and around the ski station.

In order to ensure their successful relocation to their natural environment, the researchers wanted to understand “some of the environmental requirements of these plants in order optimise germination and growth”. The main problem for these shrubs over the short term is that “they cannot self-regulate naturally in order to recover their biodiversity”.

Seeds that grow in the laboratory

The study used samples of three different soils from the ski station. The objective was to see whether they could grow in different experimental conditions. The soils were not randomly selected: they were chosen according to orientation, slope, height and proximity to the ski station slopes, etc.

Various treatments containing plant growth regulators were applied to the seeds (auxins, giberelines, citoquinines and ethylene), “in order to improve the germination rate and growth of the seeds in the laboratory, and to make it easier to subsequently transfer and plant them at the ski station”, said the researcher.

The seeds germinated and grew successfully in the laboratory. Serrano said the effectiveness of the regulators could be seen in aspects such as formation of the root system, length of the stalk, size of the cotyledons (simple leaves that feed the plant) and leaf production.

The experts hope that, when the results are applied in the field, the treatments will “help the plant cover to recover within a markedly shorter time period than that needed without any intervention”.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>