Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment shows potential for vegetation to recover at the Sierra Nevada ski station

08.12.2008
Preparation work on the ski slopes in Spain’s Sierra Nevada destroys a large number of plant species.

In their efforts to develop new methods to restore plant cover, researchers from the University of Granada have now successfully grown the area’s two native shrub species in the laboratory. They hope to use these to guarantee the biodiversity of the Sierra Nevada National Park.

The plant species of the Sierra Nevada account for 30% of Spain’s total flora, but are suffering degradation as a result of maintenance work carried out by heavy machinery on the ski slopes. Soil erosion and the loss of biodiversity are getting worse, particularly as 80 out of the 2,000 vascular plants growing in the area are endemic to these mountains.

This new experiment, the results of which will be published in the next issue of the Central European Journal of Biology, will allow “the restoration of degraded areas, fine-tuning of the current methodologies used to restore plant cover and ensure integration with the landscape, and also promote the maintenance of biodiversity in the fragile area of the Sierra Nevada”, Francisco Serrano Bernardo, lead author of the study and a researcher in the Environmental Technologies Department at the University of Granada, told SINC.

The scientists studied two shrub species native to the Sierra Nevada, along with other taxa: Genista versicolor Boiss (Leguminous) and Reseda

complicata Bory (Resedaceous), which occupy an ecological niche found primarily in and around the ski station.

In order to ensure their successful relocation to their natural environment, the researchers wanted to understand “some of the environmental requirements of these plants in order optimise germination and growth”. The main problem for these shrubs over the short term is that “they cannot self-regulate naturally in order to recover their biodiversity”.

Seeds that grow in the laboratory

The study used samples of three different soils from the ski station. The objective was to see whether they could grow in different experimental conditions. The soils were not randomly selected: they were chosen according to orientation, slope, height and proximity to the ski station slopes, etc.

Various treatments containing plant growth regulators were applied to the seeds (auxins, giberelines, citoquinines and ethylene), “in order to improve the germination rate and growth of the seeds in the laboratory, and to make it easier to subsequently transfer and plant them at the ski station”, said the researcher.

The seeds germinated and grew successfully in the laboratory. Serrano said the effectiveness of the regulators could be seen in aspects such as formation of the root system, length of the stalk, size of the cotyledons (simple leaves that feed the plant) and leaf production.

The experts hope that, when the results are applied in the field, the treatments will “help the plant cover to recover within a markedly shorter time period than that needed without any intervention”.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>