Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment shows potential for vegetation to recover at the Sierra Nevada ski station

08.12.2008
Preparation work on the ski slopes in Spain’s Sierra Nevada destroys a large number of plant species.

In their efforts to develop new methods to restore plant cover, researchers from the University of Granada have now successfully grown the area’s two native shrub species in the laboratory. They hope to use these to guarantee the biodiversity of the Sierra Nevada National Park.

The plant species of the Sierra Nevada account for 30% of Spain’s total flora, but are suffering degradation as a result of maintenance work carried out by heavy machinery on the ski slopes. Soil erosion and the loss of biodiversity are getting worse, particularly as 80 out of the 2,000 vascular plants growing in the area are endemic to these mountains.

This new experiment, the results of which will be published in the next issue of the Central European Journal of Biology, will allow “the restoration of degraded areas, fine-tuning of the current methodologies used to restore plant cover and ensure integration with the landscape, and also promote the maintenance of biodiversity in the fragile area of the Sierra Nevada”, Francisco Serrano Bernardo, lead author of the study and a researcher in the Environmental Technologies Department at the University of Granada, told SINC.

The scientists studied two shrub species native to the Sierra Nevada, along with other taxa: Genista versicolor Boiss (Leguminous) and Reseda

complicata Bory (Resedaceous), which occupy an ecological niche found primarily in and around the ski station.

In order to ensure their successful relocation to their natural environment, the researchers wanted to understand “some of the environmental requirements of these plants in order optimise germination and growth”. The main problem for these shrubs over the short term is that “they cannot self-regulate naturally in order to recover their biodiversity”.

Seeds that grow in the laboratory

The study used samples of three different soils from the ski station. The objective was to see whether they could grow in different experimental conditions. The soils were not randomly selected: they were chosen according to orientation, slope, height and proximity to the ski station slopes, etc.

Various treatments containing plant growth regulators were applied to the seeds (auxins, giberelines, citoquinines and ethylene), “in order to improve the germination rate and growth of the seeds in the laboratory, and to make it easier to subsequently transfer and plant them at the ski station”, said the researcher.

The seeds germinated and grew successfully in the laboratory. Serrano said the effectiveness of the regulators could be seen in aspects such as formation of the root system, length of the stalk, size of the cotyledons (simple leaves that feed the plant) and leaf production.

The experts hope that, when the results are applied in the field, the treatments will “help the plant cover to recover within a markedly shorter time period than that needed without any intervention”.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>