Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Build Lunar Vegetable Garden

13.09.2010
UA researchers are demonstrating that plants from Earth could be grown without soil on the moon or Mars, setting the table for astronauts who would find potatoes, peanuts, tomatoes, peppers and other vegetables awaiting their arrival.

The first extraterrestrials to inhabit the moon probably won't be little green men, but they could be little green plants.

Researchers at the University of Arizona Controlled Environment Agriculture Center, known as CEAC, are demonstrating that plants from Earth could be grown hydroponically (without soil) on the moon or Mars, setting the table for astronauts who would find potatoes, peanuts, tomatoes, peppers and other vegetables awaiting their arrival.

The research team has built a prototype lunar greenhouse in the CEAC Extreme Climate Lab at UA's Campus Agricultural Center. It represents the last 18 feet of one of several tubular structures that would be part of a proposed lunar base. The tubes would be buried beneath the moon's surface to protect the plants and astronauts from deadly solar flares, micrometeorites and cosmic rays.

The membrane-covered module can be collapsed to a 4-foot-wide disk for interplanetary travel. It contains water-cooled sodium vapor lamps and long envelopes that would be loaded with seeds, ready to sprout hydroponically.

"We can deploy the module and have the water flowing to the lamps in just ten minutes," said Phil Sadler, president of Sadler Machine Co., which designed and built the lunar greenhouse. "About 30 days later, you have vegetables."

Standing beside the growth chamber, which was overflowing with greenery despite the windowless CEAC lab, principal investigator Gene Giacomelli said, "You can think of this as a robotic mechanism that is providing food, oxygen and fresh drinking water."

Giacomelli, CEAC director and a professor of agricultural and biosystems engineering, said that although this robot is built around living green plants – instead of the carbon fiber or steel usually associated with engineering devices – it still requires all the components common to any autonomous robotic system.

These components, which include sensors that gather data, algorithms to analyze that data and a control system to optimize performance, are being designed by assistant professor Roberto Furfaro of systems and industrial engineering, and associate professor Murat Kacira of agricultural and biosystems engineering.

"We want the system to operate itself," Kacira said. "However, we're also trying to devise a remote decision-support system that would allow an operator on Earth to intervene. The system can build its own analysis and predictions, but we want to have access to the data and the control system."

This is similar to the way a CEAC food-production system has been operating at the South Pole for the past six years.

The South Pole Growth Chamber, where many ideas now used in the lunar greenhouse were developed, was also designed and fabricated by Sadler Machine Co. It provides fresh food to the South Pole research station, which is physically cut off from the outside world for six to eight months each year.

In addition to food, the growth chamber provides a valuable psychological boost for scientists who overwinter at the station.

"There's only 5 percent humidity and all you can normally smell is diesel fuel and body odor," Sadler said. But now researchers can go into the growth chamber and smell vegetables and flowers and see living green things, breaking the monotony of thousands of square miles of ice and snow surrounding their completely man-made environment.

Lane Patterson, a master's student in agricultural and biosystems engineering and primary systems operations manager of CEAC's lunar greenhouse lab, also works for Raytheon Polar Services, which provides operations support for the South Pole Growth Chamber.

"If I need to be there in the chamber looking over an operator's shoulder, that's possible with the web camera," Patterson explained. "But if I need to make an adjustment to the chamber without the operator's assistance, I can do that electronically via computer communication."

Recycling and efficient use of resources are just as important to the South Pole operation as they will be on the moon, Sadler noted. A dozen 1,000-watt sodium-vapor lights generate a lot of heat, which is siphoned away by each lamp's cooling system and used to heat the station. "Energy is expensive there," Sadler said. "It's about $35 a gallon for diesel fuel."

In fact, efficient use of resources is just as important for hydroponic greenhouses anywhere on the globe, Giacomelli emphasized. "All that we learn from the life support system in the prototype lunar greenhouse can be applied right here on Earth," he added.

"On another planet, you need to minimize your labor, recycle all you can and operate as efficiently as possible," he said. "If I ask the manager of a hydroponic greenhouse in Willcox [Ariz.] what's most important, he or she will tell me those same things – recycle, minimize labor, minimize resource use."

Carbon dioxide is fed into the prototype greenhouse from pressurized tanks, but astronauts would provide CO2 at the lunar base just by breathing. Similarly, water for the plants would be extracted from astronaut urine, and the water-cooled electric lights might be replaced by fiber optic cable – essentially light pipes – which would channel sunlight from the surface to the plants underground.

The lunar greenhouse contains approximately 220 pounds of wet plant material that can provide 53 quarts of potable water and about three-quarters of a pound of oxygen during a 24-hour period, while consuming about 100 kilowatts of electricity and a pound of carbon dioxide.

"We turned the greenhouse on about eight months ago to see how it would operate and that test run will be completed on Sept. 30," Giacomelli said.

NASA is funding that research under a $70,000 Ralph Steckler Space Grant Colonization Research and Technology Development Opportunity, which CEAC obtained with help from UA's Lunar and Planetary Laboratory. The Steckler grants are designed to support research that could lead to space colonization, a better understanding of the lunar environment and creation of technologies that will support space colonies.

CEAC now is applying for Phase II of this grant, which would provide an additional $225,000 for two years.

Although NASA funds the test run, "everything you see in this room – the greenhouse module, lights, water system – came out of Phil Sadler's pocket," Giacomelli said. "I paid for the student help and pay the bills for the research space. Obviously, we think this is important work."

The UA researchers and Sadler Machine also are collaborating with two Italian firms on this project: Thales Alenia Space, a company that builds hardware for the International Space Station, and Aero Sekur, which builds inflatable structures.

Giacomelli said the research also could lead to plant colonization in another traditionally hostile environment – large urban centers.

"There's great interest in providing locally grown, fresh food in cities, for growing food right where masses of people are living," Giacomelli said. "It's the idea of growing high-quality fresh food that only has to be transported very short distances. There also would be a sense of agriculture returning to the everyday lives of urban dwellers."

"I think that idea is as exciting as establishing plant colonies on the moon."

Pete Brown | University of Arizona
Further information:
http://www.arizona.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>