Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Build Lunar Vegetable Garden

13.09.2010
UA researchers are demonstrating that plants from Earth could be grown without soil on the moon or Mars, setting the table for astronauts who would find potatoes, peanuts, tomatoes, peppers and other vegetables awaiting their arrival.

The first extraterrestrials to inhabit the moon probably won't be little green men, but they could be little green plants.

Researchers at the University of Arizona Controlled Environment Agriculture Center, known as CEAC, are demonstrating that plants from Earth could be grown hydroponically (without soil) on the moon or Mars, setting the table for astronauts who would find potatoes, peanuts, tomatoes, peppers and other vegetables awaiting their arrival.

The research team has built a prototype lunar greenhouse in the CEAC Extreme Climate Lab at UA's Campus Agricultural Center. It represents the last 18 feet of one of several tubular structures that would be part of a proposed lunar base. The tubes would be buried beneath the moon's surface to protect the plants and astronauts from deadly solar flares, micrometeorites and cosmic rays.

The membrane-covered module can be collapsed to a 4-foot-wide disk for interplanetary travel. It contains water-cooled sodium vapor lamps and long envelopes that would be loaded with seeds, ready to sprout hydroponically.

"We can deploy the module and have the water flowing to the lamps in just ten minutes," said Phil Sadler, president of Sadler Machine Co., which designed and built the lunar greenhouse. "About 30 days later, you have vegetables."

Standing beside the growth chamber, which was overflowing with greenery despite the windowless CEAC lab, principal investigator Gene Giacomelli said, "You can think of this as a robotic mechanism that is providing food, oxygen and fresh drinking water."

Giacomelli, CEAC director and a professor of agricultural and biosystems engineering, said that although this robot is built around living green plants – instead of the carbon fiber or steel usually associated with engineering devices – it still requires all the components common to any autonomous robotic system.

These components, which include sensors that gather data, algorithms to analyze that data and a control system to optimize performance, are being designed by assistant professor Roberto Furfaro of systems and industrial engineering, and associate professor Murat Kacira of agricultural and biosystems engineering.

"We want the system to operate itself," Kacira said. "However, we're also trying to devise a remote decision-support system that would allow an operator on Earth to intervene. The system can build its own analysis and predictions, but we want to have access to the data and the control system."

This is similar to the way a CEAC food-production system has been operating at the South Pole for the past six years.

The South Pole Growth Chamber, where many ideas now used in the lunar greenhouse were developed, was also designed and fabricated by Sadler Machine Co. It provides fresh food to the South Pole research station, which is physically cut off from the outside world for six to eight months each year.

In addition to food, the growth chamber provides a valuable psychological boost for scientists who overwinter at the station.

"There's only 5 percent humidity and all you can normally smell is diesel fuel and body odor," Sadler said. But now researchers can go into the growth chamber and smell vegetables and flowers and see living green things, breaking the monotony of thousands of square miles of ice and snow surrounding their completely man-made environment.

Lane Patterson, a master's student in agricultural and biosystems engineering and primary systems operations manager of CEAC's lunar greenhouse lab, also works for Raytheon Polar Services, which provides operations support for the South Pole Growth Chamber.

"If I need to be there in the chamber looking over an operator's shoulder, that's possible with the web camera," Patterson explained. "But if I need to make an adjustment to the chamber without the operator's assistance, I can do that electronically via computer communication."

Recycling and efficient use of resources are just as important to the South Pole operation as they will be on the moon, Sadler noted. A dozen 1,000-watt sodium-vapor lights generate a lot of heat, which is siphoned away by each lamp's cooling system and used to heat the station. "Energy is expensive there," Sadler said. "It's about $35 a gallon for diesel fuel."

In fact, efficient use of resources is just as important for hydroponic greenhouses anywhere on the globe, Giacomelli emphasized. "All that we learn from the life support system in the prototype lunar greenhouse can be applied right here on Earth," he added.

"On another planet, you need to minimize your labor, recycle all you can and operate as efficiently as possible," he said. "If I ask the manager of a hydroponic greenhouse in Willcox [Ariz.] what's most important, he or she will tell me those same things – recycle, minimize labor, minimize resource use."

Carbon dioxide is fed into the prototype greenhouse from pressurized tanks, but astronauts would provide CO2 at the lunar base just by breathing. Similarly, water for the plants would be extracted from astronaut urine, and the water-cooled electric lights might be replaced by fiber optic cable – essentially light pipes – which would channel sunlight from the surface to the plants underground.

The lunar greenhouse contains approximately 220 pounds of wet plant material that can provide 53 quarts of potable water and about three-quarters of a pound of oxygen during a 24-hour period, while consuming about 100 kilowatts of electricity and a pound of carbon dioxide.

"We turned the greenhouse on about eight months ago to see how it would operate and that test run will be completed on Sept. 30," Giacomelli said.

NASA is funding that research under a $70,000 Ralph Steckler Space Grant Colonization Research and Technology Development Opportunity, which CEAC obtained with help from UA's Lunar and Planetary Laboratory. The Steckler grants are designed to support research that could lead to space colonization, a better understanding of the lunar environment and creation of technologies that will support space colonies.

CEAC now is applying for Phase II of this grant, which would provide an additional $225,000 for two years.

Although NASA funds the test run, "everything you see in this room – the greenhouse module, lights, water system – came out of Phil Sadler's pocket," Giacomelli said. "I paid for the student help and pay the bills for the research space. Obviously, we think this is important work."

The UA researchers and Sadler Machine also are collaborating with two Italian firms on this project: Thales Alenia Space, a company that builds hardware for the International Space Station, and Aero Sekur, which builds inflatable structures.

Giacomelli said the research also could lead to plant colonization in another traditionally hostile environment – large urban centers.

"There's great interest in providing locally grown, fresh food in cities, for growing food right where masses of people are living," Giacomelli said. "It's the idea of growing high-quality fresh food that only has to be transported very short distances. There also would be a sense of agriculture returning to the everyday lives of urban dwellers."

"I think that idea is as exciting as establishing plant colonies on the moon."

Pete Brown | University of Arizona
Further information:
http://www.arizona.edu

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>