Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy wasted grinding switchgrass smaller to improve flowability

13.04.2010
Biofuels processors who mill switchgrass into fine bits to help its flowability should be able to save time, energy and money by not doing so, a Purdue University study shows.

Switchgrass can be used in a number of biofuel applications, but moving it - especially feeding it into boilers - can be problematic, said Klein Ileleji, an assistant professor of agricultural and biological engineering.

While corn and soybeans are round and spherical, switchgrass is shaped more like matchsticks, causing pieces to interlock and disrupt its ability to flow. Those blockages cost time and can be dangerous for those tasked with breaking the clog, he said.

"In any facility ¨l in a power plant or in a processing facility ¨l when you have a blockage, it's a processing nightmare," said Ileleji, whose findings are in the current issue of the journal Transactions of the ASABE.

Ileleji compared circularity, roundness and aspect ratio for corn, soybean and switchgrass that had been hammermilled to three different sizes. Aspect ratio, which has the greatest effect on the ability of switchgrass to flow, is the ratio of a switchgrass particle's length to its width.

Conventional wisdom held that grinding switchgrass into smaller pieces would bring its aspect ratio closer to that of corn and soybeans, which have ratios close to 1 and no problems with flowability.

"Switchgrass is not a good flowable feedstock. You would think grinding it smaller would help," Ileleji said. "But grinding does not necessarily change the morphological characteristics in switchgrass that are important for flow."

Ileleji's testing showed that hammermilling - one of the most common grinding techniques, which beats and breaks biomass until it is small enough to pass through screens - breaks switchgrass in a way that keeps its aspect ratio about the same no matter the size. Unless the switchgrass is milled into a powder, those high aspect ratios would keep causing switchgrass to interlock and clog in bulk flow.

Ileleji said processors could save money with the information because they can stop hammermilling switchgrass when it fits through a 6.4 mm screen, the largest Ileleji tested.

"Grinding consumes a lot of energy. It is one of the highest energy costs in a processing facility," Ileleji said. "It's better to grind switchgrass through a 6.4 mm screen than to use more energy to grind through a smaller screen expecting that its handling characteristics would be improved dramatically."

Ileleji said he would study flow behavior of switchgrass through hoppers to try to find ways to keep it from creating blockages. Duke Energy and the Purdue Energy Center funded his research, which is part of his doctoral student Cedric Ogden's research on the flow mechanics of switchgrass bulk solid in hoppers under gravity discharge.

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2010/100412IelejiMorphology.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>