Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy wasted grinding switchgrass smaller to improve flowability

13.04.2010
Biofuels processors who mill switchgrass into fine bits to help its flowability should be able to save time, energy and money by not doing so, a Purdue University study shows.

Switchgrass can be used in a number of biofuel applications, but moving it - especially feeding it into boilers - can be problematic, said Klein Ileleji, an assistant professor of agricultural and biological engineering.

While corn and soybeans are round and spherical, switchgrass is shaped more like matchsticks, causing pieces to interlock and disrupt its ability to flow. Those blockages cost time and can be dangerous for those tasked with breaking the clog, he said.

"In any facility ¨l in a power plant or in a processing facility ¨l when you have a blockage, it's a processing nightmare," said Ileleji, whose findings are in the current issue of the journal Transactions of the ASABE.

Ileleji compared circularity, roundness and aspect ratio for corn, soybean and switchgrass that had been hammermilled to three different sizes. Aspect ratio, which has the greatest effect on the ability of switchgrass to flow, is the ratio of a switchgrass particle's length to its width.

Conventional wisdom held that grinding switchgrass into smaller pieces would bring its aspect ratio closer to that of corn and soybeans, which have ratios close to 1 and no problems with flowability.

"Switchgrass is not a good flowable feedstock. You would think grinding it smaller would help," Ileleji said. "But grinding does not necessarily change the morphological characteristics in switchgrass that are important for flow."

Ileleji's testing showed that hammermilling - one of the most common grinding techniques, which beats and breaks biomass until it is small enough to pass through screens - breaks switchgrass in a way that keeps its aspect ratio about the same no matter the size. Unless the switchgrass is milled into a powder, those high aspect ratios would keep causing switchgrass to interlock and clog in bulk flow.

Ileleji said processors could save money with the information because they can stop hammermilling switchgrass when it fits through a 6.4 mm screen, the largest Ileleji tested.

"Grinding consumes a lot of energy. It is one of the highest energy costs in a processing facility," Ileleji said. "It's better to grind switchgrass through a 6.4 mm screen than to use more energy to grind through a smaller screen expecting that its handling characteristics would be improved dramatically."

Ileleji said he would study flow behavior of switchgrass through hoppers to try to find ways to keep it from creating blockages. Duke Energy and the Purdue Energy Center funded his research, which is part of his doctoral student Cedric Ogden's research on the flow mechanics of switchgrass bulk solid in hoppers under gravity discharge.

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2010/100412IelejiMorphology.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>